1.中国煤层气产业发展现状与技术对策

2.Jason反演技术在天然气水合物速度分析中的应用

3.页岩气开发现状及开技术分析

4. 勘探目标评价与风险分析方法

油气田动态分析的理解_天然气动态分析方法有哪几种类型有哪些类型

王力锋

(中国石化石油勘探开发研究院无锡石油地质研究所,无锡214151)

摘要 天然气水合物的发展历史不过200 多年时间,而真正得到科学界和工业界重视的时间则更加短暂,仅有60多年而已。但在能源问题突出严重的当今社会,天然气水合物作为下一代清洁的非常规能源却正以飞快的速度赢得各个领域的不同程度的重视。本文以简述的形式,回顾天然气水合物的发展历程,着重于天然气水合物的现状、未来的发展方向以及各国策略分析。

关键词 天然气水合物,非常规能源,能源政策

A Brief Introduction to Natural Gas Hydrates

WANG Li-feng

(Wuxi Research lnstitute of Petroleum Geology,SlNOPEC,Wuxi214151)

Abstract The history of research on natural gas hydrate is not more than two hundred years and the time for it to get scientific and industrial solid concerns essentially is only of sixty years.But under the coming global energy crisis,the studies of natural gas hydrate which is regarded as potential new unconventional resources he been growing dramatically in all fields.As a brief introduction,we show reviews on its history,current situation,future perspective and energy policies all over the world.

Key words natural gas hydrate unconventional resources energy policies

1 简介

天然气水合物(natural gas hydrates,简称为NGH)属于笼形化合物(clathrate)的一种,因此又被称为笼形水合物(clathrate hydrates)[1]。从化学意义角度也可解释为一种分子构架包裹另一种分子的形式。天然气水合物是由一种或几种小分子气体在一定的温度和压力下与水作用生成的一种非固定化学计量的笼形晶体化合物[2]。在自然界中,天然气水合物呈现为似冰状的固体[3],水分子通过氢键构成骨架,由于客气体被裹在骨架内部,因此客气体最基本的要求就是其分子体积要足够的小,以便容纳于骨架内部。尽管这样的小分子气体很多,例如早在1810年,英国化学家Humphry Dy在实验室中首先发现以氯气作为客气体的水合物[4],但现在从全世界的发展前景观察,主要研究以CO2/H2O 和CH4/H2O为主的水合物主客结构,前者涉及大气环境、绿色效应和工业界尾气的封存[5,6],后者涉及新能源探测和开发利用[7]。

天然气水合物有机碳储量大,约占全球有机碳的53.3%,是其他包括煤、石油和天然气三者总量的一倍以上。其中分布在陆地上的天然气水合物最大地质储量约为5.3×1011t,主要分布在高原冻土带和高纬度的常年冻土区;分布在海洋中的最大地质储量约为1.61×1014t,主要分布在被动大陆边缘和活动大陆边缘[8]。天然气水合物能量密度大,客气体中甲烷多,可占到90%以上。在标准状态下,1标准体积的饱和甲烷气水合物完全释放后,其甲烷体积可达到164倍标准体积,因而单位体积的天然气水合物燃烧所放出的热量远远大于煤、石油和天然气,为煤的10倍,是传统天然气的2~5倍[1]。

天然气水合物的赋存条件主要受温度、压力和气源等控制,当然也包括其他因素的限定。目前研究表明,天然气水合物是在低温(0~10℃)、高压(>10 MPa)下形成的,在陆地和海洋中稳定带分布条件并不十分苛刻[9]。资料统计表明,冻土地区天然气水合物可在100m左右深度的浅层存在,最大可达1800~2000m,最常见的是700~1000m;在海洋中存在水深为300~5500m,在距离海底1000m深处都可能稳定存在[2]。

2 研究进展

英国科学家Dy在1810年首次发现了天然气水合物,当时他所发现的是氯气作为客气体的水合物[4]。第二年,Dy经过仔细地研究这种物质后,发表了正式的学术论文,稍后他又在英国学会展示了他的发现,这是天然气水合物走进人类历史的第一个印迹。

但在此之后的100年里天然气水合物研究发展速度不快,进展相对缓慢,人们仅通过实验室来认识水合物。1832年,Faraday在实验室合成了氯气水合物Cl2·10H2O,并对水合物的性质做了较系统的描述。其后人们陆续在实验室合成了Br2,SO2,CO2以及H2S等的气水合物。1884年,Roozeboom提出了天然气水合物形成的相理论[10]。此后不久,Villard在实验室合成了CH4,C2H6,C2H4以及C2H2等的气水合物[11]。1919 年,Scheffer和Meijer建立了一种新的动力学理论方法来直接分析天然气水合物,他们应用Clausius-Clapeyron方程建立三相平衡曲线,来推测水合物的组成。由此可见这段时期的研究主要集中在纯科学的研究范围内。

天然气水合物从发现到20世纪30年代并没有引起工业界重视,直到人们发现它是远东地区冬天里堵塞煤气管道的物质[12],这时对它的物理化学性质才开始比较深入的研究,出于工业生产目的,其间对水合物的抑制剂研究较为繁盛[13]。60年代,原苏联科学家预言了自然界中存在天然气水合物[14],后来在远东的梅索亚哈气田勘测证实有天然气水合物存在,极大地促进了人们对未来能源的期盼。据科学家保守估计,现在全世界以天然气水合物形式包裹的碳总量是其他常规能源碳总量的两倍之巨[2]。另一方面,由于温室效应气体二氧化碳大量地排放到空气中,使近些年来全球气候异常,厄尔尼诺现象和全球平均温度的上升已经开始导致生物生存的环境发生不可逆的恶化,因此有效地减少二氧化碳这种温室气体排放到空气中、减少温室效应,在科学界和工业界也逐渐形成广泛共识[15]。目前,日本、美国等几个国家前瞻性地研究天然气水合物将其作为对二氧化碳的有效封闭物质,把二氧化碳禁锢在主气体的框架内沉到深海排泄地,从而达到封存温室气体的效果[16]。

科学界认识到天然气水合物的研究已经成为一门综合各种学科的系统工程,除了涉及常规的物理和化学知识外,微生物学、计算机模拟、工程学和经济生态学等学科也渗透其中。物理、化学理论进展已经有几十年的积淀,成果斐然,而后来新兴的边缘科学从更广的角度给科学界带了对天然气水合物重新认识的机遇[1]。微生物(尤其是厌氧环境中的微生物)与水合物关系最为密切,其栖息环境与水合物的赋存环境相互依存。有迹象表明,在海底表面暴露的水合物与此相关[17]。计算机模拟的应用除了宏观地预测天然气水合物的赋存空间之外,还可在微观上模拟水合物分子的形成过程,便于理解和寻找水合物的有利靶区。工程学带动了水合物研究的实验室技术,现在已经开发了很多高度精密且灵活方便的仪器用来记录和刻画天然气水合物形成的实验过程,正是这些先进的实验装置极大地促进了水合物的研究进展。经济生态学既是自然科学,同时也是人文科学,由于天然气水合物是巨大的能源仓储,如果未来某一天可具有经济意义的开,必将会改变现今世界的能量消耗模式,世界经济格局也必然随之改变,由能源再分配所引发的未来世界变化也应引起足够重视,这不仅关系到个人和国家的发展,同时也是企业未来发展的良好预判[18]。

3 各国动态

目前,美国、日本、印度等能源进口大国纷纷涉足天然气水合物的研究,上述3个国家最为积极,对天然气水合物的研究都受到了国家财政部的全力支持。

日本从1992年起开始关注天然气水合物,1995年由通商产业省能源厅石油公团联合10家石油天然气私营企业,设立了“甲烷天然气水合物研究及开发推进初步”,为期5年,投入的研究经费高达9000万美元。经由对日本周边海域,特别是对鄂霍次克海的调查,初估天然气水合物量可供日本100年的能源消耗。

1995年冬,以美国为首的ODP164航次海洋探测,在大西洋西部布莱克海台针对天然气水合物进行了专门的调查,首次肯定其具有商业开发价值。同时指出,天然气水合物矿层之下的游离气(气态天然气)也具有经济价值。据初步估计,该地区天然气水合物量多达100×108t,可满足美国105年的天然气消耗。美国参议院于1998年通过决议,把天然气水合物作为国家发展的战略能源,并列入国家级长程,要求每年投入2000万美元进行探勘,并于2015年进行商业性试。

印度为了解决天然气供应问题也开展了大量的水合物研究,已获取了印度大陆边缘的地震数据。此外,在印度东海岸Krishna-Godari盆地的常规油气田开中也发现了水合物。

近年来,我国传统化石燃料已不能满足我国经济发展、环境保护的需要,仅2002年我国进口原油和成品油就近1×108t,预计2010 年石油缺口为1.2×108t。随着我国经济的快速发展,我国今后对能源的需求将急剧增加,我国能源安全和后续能源供应直接关系到我国社会和经济的可持续发展,因此开展天然气水合物研究具有重大战略意义。针对我国近年来能源供需矛盾日益突出、对国外石油和天然气的依赖程度不断加大的状况,面对国家开发新型洁净能源的现实需求,为提升我国天然气水合物的研究开发水平,促进我国经济和社会的可持续发展,中国科学院积极部署天然气水合物研究工作,组织了跨所、跨学科的优势研究力量,依托广州能源所,组织地质与地球物理所、广州能源所、广州地化所和南海海洋所等单位于2004年3月正式在广州成立了“中国科学院天然气水合物研究中心”。与此同时,一些国内大型企业也逐步开始认识到天然气水合物的未来能源意义,如中石化和中石油等已经着手启动了勘探研究等项目。发展、开发一套关键的高新技术,为开展海洋天然气水合物综合勘测研究提供高技术支撑,是形势的需要,是国家发展战略的需要。同时,高新研究勘测关键技术的开发,也可带动相关学科的发展,赶上国际发展步伐,维护国家权益,保持经济发展增长不衰。

中国天然气水合物研究虽起步较晚,但近几年效果显著,先后在我国南海和东海盆地发现了数量可观的天然气水合物矿带,通过分析地球物理探矿资料和追踪天然气水合物存在标志,证实仅在南海北部西沙海槽区估算的天然气水合物总量达到(469~563)×109桶的石油当量,大约相当于我国陆上和近海石油天然气总量的二分之一。在青藏高原的羌塘盆地,天然气水合物研究也处于调研阶段,研究项目稳步推进。令人更为欣喜的是最近在我国南海东沙海槽提取到天然气水合物实物,这无疑会大大加速我国天然气水合物的研发力度和规模。

致谢 研究工作得到所领导赵克斌教授和其他同事的帮助,表示衷心的感谢。

参考文献

[1]Sloan ED.Clathrate hydrates of natural gases[M].2nd ed.New York,Marcel Dekker.1998.

[2]Makogon IF,Makogon YF.Hydrates of hydrocarbons[M].Tulsa,Oklahoma,Penn Well Publishing Company.19.

[3]Peters D,Mehta A,Walsh J.A comprehensive model based upon facts,conjecture,and field experience[C].In.Proceedings of the 4th international conference on gas hydrates.2002.

[4]Dy H.On a combination of oxymuriatic gas and oxygene gas London[C].Royal Society of London Philosophical Transactions,1810:1811.

[5]Lelieveld J,Crutzen PJ,Dentener FJ.Changing concentration,lifetimes and climate of forcing of atmospheric methane[J].Tellus B 1998,50:128~150.

[6]Houghton JT,et al.The scientific basis.Cambridge[M],Cambridge Univ.Press.2001.

[7]Kleinberg R,Brewer P.Probing gas hydrate deposits - Exploiting this immense unconventional energy resource presents great challenges[J].Am Sci 2001,89:244~51.

[8]蒋国盛,王达,汤凤林等.天然气水合物的勘探和开发[M].武汉:中国地质大学出版社.2002.

[9]Kvenvolden KA.Gas hydrates—Geological perspective and global change[J].Rev Geophys 1993,31:173~87.

[10]Dyadin YA,Aladko LS.Composition of clathrate hydrates of bromine[J].Journal of Structural Chemistry.16,18(1):7~41.

[11]Mao WL,et al.Hydrogen clusters in clathrate hydrate[J].Sci.2002,2(5590):2247~2249.

[12]Lippmann D,Kessel D,Rahimian I.Gas hydrate equilibria and kinetics of gas/oil/water mixtures[J].Annal of the New York academy of sciences.1994,715(1):525~527.

[13]Nydal OJ,Banerjee S.Dynamic slug tracking simulations for gas-liquid flow in pipelines[J].Chemical Engineering Communications,1994,141(1):13~39.

[14]Yakushev VS,Chuvilin EM.Natural gas and gas hydrate accumulations within permafrost in Russia[J].Cold Regions Science and Technology,2000,31(3):189~.

[15]Suess E,et al.Gas hydrate destabilization,enhanced dewatering,benthic material turnover and large methane plumes at the Cascadia convergent margin[J].Earth and Planetary Science Letters.1999,170(1~2):1~15.

[16]Handa N.Discussion on the direct ocean disposal of CO2.In:Handa N,Ohsumi T,editors.Direct ocean disposal of carbon dioxide[C].Tokyo,Terra Scientific Publishing Company.1995.45~61.

[17]Zhang GC,et al.Investigation of microbial influences on seafloor gas-hydrate formations[J].Marine Chemistry.2007,103(3~4),359~69.

[18]Max MD,Johnson AH,Dillon WP.Economic geology of natural gas hydrate[M].Dordrecht,Netherlands,Springer.2006.

中国煤层气产业发展现状与技术对策

沙志彬 梁金强 王力峰 匡增桂

(广州海洋地质调查局 广州 510760)

基金项目:国土部公益性行业科研专项项目(编号:200811014)、国家高技术研究发展课题(编号:2009AA09A202)和国家重点基础研究发展(3)(编号:2009CB219502-1)资助。

第一作者简介:沙志彬(12.4—),男,教授级高工,主要从事石油地质和天然气水合物的研究。

摘要 天然气水合物是一种新型能源,形成水合物的天然气主要是来自于下部生烃源岩,当天然气在向上溢出的过程中遇到温度、压力和地层物性合适的区域便形成了天然气水合物矿藏。但天然气又是靠什么路径运移到储层的呢?经过研究,认定研究区的天然气主要是利用气烟囱进行运移的。而气烟囱识别分析技术就是利用研究区三维地震信息,通过对地震剖面的分析以及神经网络的运算,对天然气运移形式进行描述,直观地展示天然气运移通道及赋存情况,通过垂向上和平面上的气烟囱效应来预测水合物的发育带,并将形成水合物富集所需要的天然气源岩进行初步评估。然后在平面上展示出天然气运移分布范围和天然气水合物矿藏的成藏范围,从而为进一步研究水合物的形成、存储提供依据,并可为水合物勘探中的井位部署提供参考。

关键词 气烟囱天然气水合物 研究应用

1 气烟囱的概念

在石油地质学中,“气烟囱”(Gas Chim ney)是一个崭新的概念,“气烟囱”一经形成,就可作为后期油气或热流体不可忽视的通道,揭示油气的发育地点及运移到一个储层,以及如何从储层溢出,产生浅层油气。可见“气烟囱”对油气运移与聚集会产生重要影响,是大中型油气田存在的重要标志之一[1~2]。

从地质成因角度来说,气烟囱是由活动热流体作用形成的一种特殊的伴生构造,这种伴生构造曾经是热流体(气、液)的泄压通道,不仅形似烟囱,且具烟囱效应。其静态形状上似裂隙、裂缝,而在动态变化上表现为增压破裂—泄压闭合—增压破裂这种旋回性“幕式”张合特征[2]。从地震表现角度来说,气烟囱则可定义为在品质非常好的常规地震剖面上,某些部位反射波突然出现杂乱反射、振幅大幅度减弱(偶尔为强振幅)的这种柱状、椭圆状或锥形体地震模糊带,并且核部低速,据此可识别气体渗漏的位置和展布情况[3]。

地震剖面上所揭示的气烟囱是流体垂向活动的直接证据。在地震剖面上造成反射模糊带,甚至空白区,其原因是气层低速异常和反射屏蔽的影响,使反射波信噪比大幅度降低。对于地震剖面上弱振幅、低连续性的特征,其原因可能为天然气从储层沿着构造薄弱带向上运移,当运移比较剧烈时可能破坏地层原始沉积层理,同时地层中含有天然气会大量吸收地震能量[4]。

2 气烟囱与天然气水合物成藏的关系

天然气水合物是一种新型能源,其成藏条件比较特殊,主要形成于300m深的海底以下100~400m之间的地层中,是以层状、块状、团状等形式富集,主要是充填在海底沉积物的空隙和裂缝中,形成水合物的天然气主要是来自于下部源岩生烃后运移到合适的地层富集成藏的[5~6]。但天然气又是靠什么路径运移到储层的呢?经过对地震剖面的分析以及神经网络的运算,认定研究区的天然气主要是利用气烟囱进行运移的(图1)。当天然气在向上溢出的过程中遇到温度、压力和地层物性合适的区域便形成了天然气水合物矿藏[7~8]。因此,可以利用气烟囱识别技术预测天然气水合物分布范围[9]。同时,气烟囱在形成过程中携带大量富含甲烷气的流体向上运移到天然气水合物稳定带,形成之后仍可作为后期活动的油气向上运移的特殊通道[10]。此外,运用地震识别出的似海底反射(BSR)来识别气烟囱构造,通过速度、泥岩含量、流体势等属性参数及钻井资料,还可以判断该烟囱构造的类型[11~12]。

图1 烃类的运移、聚集特征示意图Fig.1 Illu st ration of hydrocarbon migration and accum ulation

至于水合物形成的地质模式,目前主要有两种观点:一种是原先的因温度或 孔隙压力变化而转变为水合物;另外一种是微生物成因气或热成因气从下部运移至水合物稳定带而形成水合物。前一种情况下,水合物形成的重要原因不是外来物质的供给,而是原先天然气藏系统内的变化,水合物呈分散状存在于岩石中或者与已存在的气藏共生[3]。而后一种情况,由于天然气丰度不断增加,当天然气在向上溢出的过程中遇到温度、压力和地层物性合适的区域便导致水合物生成、积聚。当沉积层中的水合物充填程度越来越高时,沉积层变得不透水不透气,并在水合物稳定带之下形成常规气藏[4]。

深部形成的烃类气体一旦形成,就出现在运移和聚集的动态过程中。在粘土、粉砂质粘土等低渗透性沉积物中,一般发生垂直向上的运移;在高渗透性的砂质沉积物,或者裂隙发育的岩层中,深部来源的烃类气体大多沿地层上倾方向运移[2~3]。在深部构造发育的区块,对于热解气以及深部运移气体形成的水合物而言,有利于气体进入水合物稳定域的运移通道是控制水合物形成和分布的关键因素[13~14]。

因此,认为气烟囱与天然气水合物成藏的关系体现如下:

1)气烟囱以流体运移为主要特征;

2)气烟囱是天然气垂向运移的有效途径;

3)气烟囱构造为天然气聚集形成水合物提供有利圈闭条件[15~16]。

3 气烟囱识别分析技术的研发及应用

3.1 地质模拟与工作流程

在气烟囱体中地震响应的垂直扰动得到加强,这些扰动常常与油气的垂直运移通道有关,通过对世界范围内许多处理的地震气烟囱的推断已经证明气烟囱在油源评价、运移、储存、(断层)封堵性以及溢出点都非常有用[2、4],其成因机理模型如图2、图3和图4。从以上三个图中可以看出,图2气烟囱发育较弱,油气藏以油层为主,含气较少,且断层跟油气藏没有直接连通,油气封盖条件较好,因此油气逸散量较小,在油气藏上覆地层气烟囱效应较弱,所以该类油气藏总体保存条件较好;图3气烟囱发育明显,油气藏富集,封盖条件较好,但下部气层较厚,含气层具有较大的流体压力,因此上部盖层的封盖压力不足以完全对气层形成封盖,因此具有较明显的气烟囱效应,所以该类油气藏总体保存条件一般;图4气烟囱发育明显,由于有断层跟上、下部油气层直接连通,且断层封堵性较差,油气储存条件被破坏,造成油气大量逸散,因此具有明显的气烟囱效应,所以该类油气藏总体保存条件较差。

在技术上对气烟囱体的预测研究主要是所谓的“地震气烟囱处理技术”,即运用多层非线性神经网络技术对未知地震区块进行预测。为实现地震资料自动化的地质解释,其中心环节是通常所说的模式识别,即建立地震资料气烟囱特征参数(如相似性)与气烟囱地质目标之间的关系[3]。

图2 地质发育配置关系较好Fig.2 Good geological arrangement

图3 地质发育配置关系一般Fig.3 Ordinary geological arrangement

图4 地质发育配置关系较差Fig.4 Bad geological arrangement

为了实现气烟囱体的计算,用荷兰DGB地球科技公司与挪威国家石油公司共同开发的地震属性处理与模式识别软件Opend-Tect。O pend-Tect在强化细微的地震特征信息的基础上,分析这些反映不同地质沉积信息的空间分布,把多种地震数据体的信息综合到一起以得到目标体的最佳图像。并且O pend-Tect用神经网络、数学逻辑运算对多个属性体处理,得到直接反映地下地质特征的新属性。O pend-Tect的核心步骤是倾角控制(Steer-ing),它在其所有的运算和处理过程中起着举足轻重的作用,是后续神经网络运算的前提和基础。以下就是我们应用O pend-Tect计算气烟囱体的工作流程(图5)。

图5 预测气烟囱体技术流程图Fig.5 Flow chart of gas chimney predication

3.2 气烟囱体计算的数据准备

为了更准确地识别气烟囱体,我们需要对原始的地震数据做中值倾角滤波,以减少处理时产生的随机扰动,使预测出的结果更加真实可靠。

O pend-Tect核心技术之一是在提取属性和对数据滤波时考虑了所探测的地质体的方向及空间展布。当地质体的方向已知时,方向性原理容易被应用,例如在地震气烟囱或直接碳烃检测中,很多目标体无固定方向,但是它在各个方向倾斜。在这种情况下,在一定范围的倾斜时窗中提取属性比在固定时窗中更有利。因此,需要知道局部倾角及每个样点处的方位角。

O pend-Tect提供了3种计算倾角及方位的方法,计算结果被称为“定向体”,也就是每一个样点处都带有倾角和方位角信息的数据体。用倾角定向对地震数据做倾角定向滤波,改善同相轴的横向连续性,减少随机扰动。该滤波的主要特点是无滤波尾巴。

中值倾角滤波是一个数据驱动工具并产生一个整理过的数据体。在该数据体中,连续相位被加强并且随机分布的噪音被压制。滤波增加了地震数据输出的可解释性,提高了水平层自动追踪的可执行性。滤波基本上搜集了我们定义圆域内的所有属性并在中心用振幅中值替换了原有值,搜索区域遵循控制体内的倾角而定(图6)。

图6 中值倾角滤波原理Fig.6 Median dip filtration principle

综合控制体的滤波工作流程如下:

1)定义搜索半径;

2)从开始位置提取首个振幅;

3)沿着倾角和方位角通向下一道;

4)在该点提取内插值振幅;

5)在搜索半径内对所有道重复第3、4步操作;

6)用所有提取振幅的中值来替换起始位置振幅;

7)对体内所有样本重复操作第2~6步。

4道半径的滤波输入包含57个点。注意该圆不是平坦的也不是水平的,但是从一道到另一道是符合地震相位的。

中值应该定义成一系列中心点位置相关的值。因此,如果从最小到最大列出N个振幅,就可以取(N+1)/2处的位置值作为中值,这里的N是一个奇数。要理解一个中值滤波的效果,可设已经用了3个点的中值滤波来过虑一个地震相位。滤波过程由下面给出:

……0,0,1,0,0,1,1,3,0,1,1……

3点中值过滤响应由下面给出:

……0,0,0,0,0,1,1,1,1,1,1,1,1……

要检查这个,取3个相邻输入号码,排列并输出中间的值,然后改变输入组的一个位置并重复的练习。

请注意:

1)短于半个滤波的相位被清除(例如左侧1右侧0);

2)噪音也被清除(值3);

3)边界保留(主要的0带和主要的1带的间隙完全同一个位置,就是说无滤波导入)。

3.3 提取样本位置

图形窗口中提取烟囱体和非烟囱体。我们建议开始时做一些不同时间的相似性切片,这样可以在不同的时间尺度上初步判断气烟囱体的分布和走向特征。

在一个可能的烟囱体位置上显示一个或者是更多的属性来检查烟囱体单属性下如何显现,通过不同的属性对比来突出气烟囱体,以利于后续的拾取训练点。

做完这些工作以后,我们已经准备好拾取烟囱体和非烟囱体了。要求第一步产生两种不同的拾取组:一个是烟囱体,一个是非烟囱体,使用子目录中右击上栏菜单来实现,键入想创建的拾取组的名字,例如“烟囱体……是”并开始提取。在子目录中点击数据元素来移动元素到另一个位置并重复处理,重复这个练习直到取出了所需的所有样本点。

现在拾取非烟囱体点,并分别保存到不同的拾取组团(图7)。拾取样本位置是这个处理的关键步骤。应该取向于创建最有代表性的为烟囱体或非烟囱体拾取组。如果数据中有多个烟囱体,不要仅取于一个,试着在尽可能宽范围的时间域内把这些都拾取。

图7 神经网络训练组(绿色点表示气烟囱,蓝点表示非气烟囱)Fig.7 Neural network training(green dot:gas chimney,blue dot:not gas chimney)

3.4 神经网络及其算法

1)人工神经网络是模拟生物神经信息处理方法的新型计算机系统,它可以模拟人脑的一些基本特征(如自适应性,自组织性和容错性),是一个并行、分布处理结构,它由处理单元及其称为联接的无向信号通道互连而成。人工神经网络力图模仿生物神经系统,通过接受外部输入的刺激,不断获得并积累知识,进而具有一定的判断预测能力。

2)BP神经网络算法

BP网络算法的思想是把一组样本的I/O问题变为一个非线性优化问题,使用了优化中最普通的梯度下降法,用迭代运算求解权对应于学习记忆问题,加入隐含层节点使优化问题的可调参数增加,从而可得到更精确的解。BP网络模型设计的最大特点是网络权值是通过使用网络模型输出值与已知的样本值之间的误差平方和达到期望值而不断调整出来的,并且确定BP神经网络评价模型时涉及隐含层节点数、转移函数、学习参数和网络模型的最后选定等问题。

3.5 神经网络训练

首先在O pend-Tect里面创建一个新的神经网络,并选择想使用的属性(通常是全部)和包含了烟囱体和非烟囱体的拾取组团,一般说来不是所有位置都用来训练网络,但是一定比例的(10,10,20)样本是用来避免过度适配网络,神经网络将在我们声明的位置提取属性,它将随机分配数据到训练和测试组,并且启动训练状态。训练执行情况在训练期间被追踪(图8),并用两种指数来表示。RMS错误值曲线表示训练组和测试组的总的错误,分别从1(最大错误)到0(最小错误)两个曲线在训练间都应走低,当测试曲线再次走高表示网络过度适配。训练应在这发生之前适可而止。典型的一个RMS值在0.8范围内被认为是合理,0.8~0.6是好,0.6~0.4是很好,低于0.4为极好。

图8 神经网络训练监管窗口Fig.8 Monitoring window for Neural network training

最后将发现网络节点会在训练中变色。颜色暗示了在分类里面每个节点(每个输入属性)的重要程度,颜色从红(最重要)经黄到白(最不重要)过度训练。当一个网络从训练组中识别单个样本时会发生过度适配(overfitting)网络会在训练组中表现得更优,但是会在测试组中表现变差。当在训练组上的表现达到最大(最小错误)最优化结果的网络训练会停止,停止的点可以从神经网络训练窗口中的执行图表里查看。满意后,接下来把训练的网络推广到整个数据体。这个在“产生体”模块中操作完成。如果不想处理整个数据体,也可以限制输出范围来产生一个小数据体。为加快速度,可以在联机处理模式下在多台机器上运行工作,O pend-Tect会在声明的机器上分配数据并在处理结束时合成输出结果。

3.6 气烟囱技术在研究区的应用

通过研究区的气烟囱处理效果分析来看,研究区的气烟囱较为发育,作为一种油气运移的通道控制着整个研究区天然气水合物的分布和储量。从研究区LineA线的气烟囱效果图可以看出(图9),烟囱现象主要是发育在BSR下部,发育BSR的背斜处的下部存在明显的气烟囱现象,为天然气水合物的成藏提供足够的气源,证明此处的储层主要是利用气烟囱这种运移方式富集天然气的;从图中还可以看出气烟囱在1650ms以下的地层中发育,从侧面说明在神狐区域源岩生成的天然气被很好地保存在地层中,并在有利位置成藏。对析沿BSR±50ms时窗提取气烟囱平面效果图来看(图10),气烟囱在BSR以下发育充分,而在BSR以上则没有明显的显示,说明研究区的气体是沿着下部源岩向上运移的,烟囱效应是由下部到上部是逐渐减少的。由此可以初步认为,流体在运移过程中在有利区域发生富集,也就是在BSR附近存在并富集。

图9 Line A线气烟囱显示Fig.9 Display of gas chimney in Line A

图10 沿BSR±50ms时窗提取气烟囱平面效果图Fig.10 P lane slices at BSR±50ms derived from gas chimney identification technique

气烟囱在形成过程中携带大量富含天然气的流体向上运移到天然气水合物稳定带,其形成之后仍可作为后期活动的油气向上运移的特殊通道。通过平面和剖面结合分析,可以对天然气运移分布范围进行检测,对水合物的成藏范围进行圈定。

4 认识与讨论

利用DG B公司Opend-Tect软件气烟囱技术,通过对地震剖面的分析以及神经网络的运算,对天然气运移形式进行预测,直观地展示天然气运移通道及赋存情况,通过垂向上和平面上的气烟囱效应来预测水合物的发育带,并将形成水合物富集所需要的天然气源岩进行初步预测。然后在平面上展示出天然气运移分布范围和天然气水合物矿藏的成藏范围,从而为进一步研究天然气水合物的形成、存储提供依据,并为天然气水合物勘探中的井位部署提供参考。因此,气烟囱识别分析技术可以应用于天然气水合物矿藏的勘探与评价当中。总结本文得出以下几点认识与讨论:

1)研究区的气烟囱较为发育,作为一种油气运移的通道控制着整个研究区天然气水合物的分布和储量;

2)气烟囱现象主要是发育在BSR下部,气烟囱体为天然气水合物的成藏提供足够的气源,同时天然气被很好地保存在地层中,并在有利位置成藏;

3)气烟囱在BSR以下发育充分,而在BSR 以上则没有明显的显示,说明烟囱效应是由下部到上部是逐渐减少的,认为流体在运移过程中在有利区域发生富集,也就是在BSR附近存在并富集。

4)通过平面和剖面结合分析,可以对天然气运移分布范围进行检测,对天然气水合物的成藏范围进行圈定,为井位部署提供参考。

参考文献

[1]张为民,李继亮,钟嘉猷等.气烟囱的行程机理及其与油气的关系探讨.地质科学,2000,35(4):449~455

[2]张树林,田世澄,朱芳冰.莺歌海盆地底辟构造的成因及石油地质意义.中国海上油气,1996,10(1):1~6

[3]Marcello Simoncelli,HUANG Zu-xi,柴达木盆地应用叠前偏移技术消除“气烟囱”效应.石油勘探与开发,2003,30(2):115~118

[4]解习农,刘晓峰,赵士宝等.异常压力环境下流体活动及其油气运移主通道分析.地球科学,2004,29(5):589~595

[5]张光学,黄永样,陈邦彦等.海域天然气水合物地震学[M].北京:海洋出版社,2003

[6]马在田,耿建华,董良国等.海洋天然气水合物的地震识别方法研究.海洋地质与第四纪地质,2002,1:1~8

[7]梁全胜,刘震,王德杰等.“气烟囱“与油气勘探.新疆石油地质,2006,27(3):288~290

[8]刘殊,范菊芬,曲国胜等.气烟囱效应——礁滩相岩性气藏的典型地震响应特征.天然气工业,2006,26(11):52~56

[9]EckerC,Dvorkin J,NurA M.Estimatingthe amount of gas hydrate and free gasfrom marine seismic data[J].Geophys.ics,2000,65,565~573

[10]Wood WT,Stofa P L,Shipley TH.Quantitative detection of methane hydrate through high-resolution seismic velocity analysis[J].J.Geophys.Res.,1994,99,9681~9695

[11]Sloan E D.Clathrate Hydrates of Natural Gas.Marcel Dekker,New York,1990

[12]Miller JJ,MyungW L,vonHueneR.An analysis of a reflectionfromthe base of a gas hydrate zone of Peru[J].Am.Assoc.Pet.Geol.Bull.,1991,75,910~924

[13]Hyndman R D,Foucher J P,Yamano M,et al.Deep sea bottom-simulating-reflector:calibration ofthe base of the hydrate stability field as used for heat flow estimates.Earth and Planetary Science Letter,1992,109,289~301

[14]Hyndman R D,Dis E E.Amechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion.J.Geophys.Res.,B,Solid Earth and Planets,1992,(5):7025~7041

[15]梁全胜,刘震,常迈等.柴达木盆地三湖地区第四系气藏形成与“烟囱效应”.新疆石油地质,2006,27(2):156~159

[16]王秀娟,吴时国,董冬冬等.琼东南盆地气烟囱构造特点及其与天然气水合物的关系.海洋地质与第四纪地质,2008,28(3):103~108

Application of Gas Chim ney Identification Technique to Study of the Gas Hydrates

Sha Zhibin,Liang Jinqiang,Wang Lifeng,Kuang Zenggui(Guangzhou Marine Geological Survey,Guangzhou,510760)

Abstract:Gas hydrates are expected to be a new type of energy source in the future.The forming gases coming from the source rocks underneath can be converted to gas hydrates along the ascending paths where the environment parameters,such as temperature,pressure and geological properties,for the form ation of gas hydrates.So what about the ascending paths?We believed that gas chimney contributes to the cause of ascending mostly.Byseismic profiles analysis and neural network calculation,gas chim ney identification technique makes use of 3-D seismic inform ation data and attribute to describe the gases migrating m odel,display the ascending paths,predict gas hydrates accum ulation and preliminarily evaluate source rocks shown in the 3-D space.The processed results can also be dem onstrated on the base map to mark out gases scope and gas hydrates scope respectively for the evidence of gas hydrates formation and accumulation,and further more provide the meaningful references to borehole dispositions of gas hydrates field exploration.

Key words:Gas chim ney;Gas hydrates;Study;Application

Jason反演技术在天然气水合物速度分析中的应用

王一兵1杨焦生1王金友2周元刚2鲍清英1

(1.中国石油勘探开发研究院廊坊分院廊坊065007;2.中国石油渤海钻探公司第二录井公司天津300457)

摘要:本文通过分析我国煤层气发展历程和现状,总结了我国从上世纪80年代以来煤层气发展经历了“前期评价、勘探选区、开发试验、规模开发”四个阶段。在分析我国煤层气地质条件基础上,认为已发现的煤层气田(富集区)煤层普遍演化程度高、渗透率低;总结了适合我国复杂地质条件的煤层气配套开发技术,包括钻井完井、储层保护、水力压裂、排控制等,并分析了各种技术的应用效果,认为我国1000m以浅中高煤阶煤层气开发技术基本成熟。在此基础上预测了我国提高煤层气开发效果的技术发展方向。

关键词:煤层气 开发技术 压裂 排

基金项目: 国家 3 项目 ( 2009CB219607) 、国家科技重大专项 “大型油气田及煤层气开发”课题 33,43( 2011ZX05033 001'',2011ZX05043) 。

作者介绍: 王一兵,男,1966 年 6 月生,2008 年获中国地质大学 ( 北京) 博士学位,高级工程师,多年从事煤层气勘探开发综合研究工作。E mail: wybmcq69@ petrochina. com. cn

The Development Status and Technical Countermeasures of China CBM Industry

WANG Yibing1YANG Jiaosheng1WANG Jinyou2ZHOU Yuangang2 BAO Qingying1

( 1. Langfang Branch,Research Institute of Petroleum Exploration and Development,PetroChina, Langfang 065007,China; 2. The second logging company of bohai drilling and exploration company,Petrochina,Tianjin 300457,China)

Abstract: Through analyzing CBM development history and present situation in China,this article he sum- marized the four stages in CBM development from the 1980's,which can be called“earlier period's raisal,ex- plores and region optimization,development experiments,scale development”. Based on the analysis of the geolog- ical conditions ,it is revealed that CBM fields founded already are commonly characterized with high evolution de- gree,low permeability. Simultaneously,the corollary CBM development technologies suitable for China's complex geological conditions are summarized,including drilling / completion,coal-bed protection,hydraulic fracturing and dewatering control,also all technologies’lication effect are evaluated. In general,it can be believed that the CBMdevelopmenttechnologiesinmiddleandhighrankcoal-bedshallowerthan1000mhebeenbasicallyma- tured.Finally,thedirectionofdevelopmenttechnologiesisforecasted.

Keywords:CBM;developmenttechnologies;hydraulicfracturing;dewatering

我国煤层气丰富,预测 2000 m 以浅煤层气量 36. 8 万亿 m3( 国土部,2006) ,可量约 11 万亿 m3,仅次于俄罗斯和加拿大,超过美国,居世界第三位。规模开发国内丰富的煤层气,可在一定程度上减轻我国对进口石油天然气的依赖,同时对实现我国能源战略接替和可持续发展、降低煤矿瓦斯含量和瓦斯排放、减少煤矿瓦斯灾害、保护大气环境具有重要意义。

1 煤层气规模开发已经起步,初步具备产业雏形

自上世纪 80 年代后期以来,国内石油、煤炭、地矿系统的企业和科研单位,以及一些外国公司,对全国 30 多个含煤区进行了勘探、开发和技术试验,在沁水盆地、鄂尔多斯盆地东缘韩城、大宁—吉县、柳林—兴县地区、安徽淮北煤田、辽宁阜新煤田等试验井都获得了较高的产气量。截至 2010 年底,全国已累计探明煤层气地质储量 3311 亿 m3,并针对不同煤阶的煤层气特点,掌握了实验室分析化验和地质评价技术,直井/丛式井钻井完井、多分支水平井钻井技术,空气/泡沫钻井及水平井注气保压欠平衡储层保护技术,注入/压降试井技术,压裂增产和排等技术系列,在沁水盆地南部、鄂尔多斯盆地东缘、宁武盆地南部、阜新煤田、铁法煤田、淮南淮北等地分别获得了具有经济价值的稳定气流,为规模开发准备了可靠的、技术条件。

近年国内天然气市场的快速发展,天然气基础管网逐步完善,煤层气开发迎来前所未有的机遇。特别是 2007 年出台了煤层气开发补贴政策,极大地调动了相关企业投资煤层气产业的积极性,促进了煤层气产业的快速发展,近年全国煤层气开发井由不足百口增加到 5240 余口 ( 含水平井约 100 口) ,建成煤层气产能约 30 亿 m3/ 年,年产气量超过15 亿 m3( 图 1) ,形成沁南、鄂东 2 大煤层气区为重点的产业格局。预测到 “十二五”期间,全国地面钻井开发的煤层气产量可以达到 100 亿 m3以上。

我国煤层气发展,主要经历了四个发展阶段 ( 图 2) 。

图 1 中国历年煤层气开发井数与产量图

图 2 中国煤层气发展阶段划分

80年代前期评价阶段:在全国30多个煤层气目标区开展了前期地质评价研究;

1992~2000年勘探选区阶段:在江西丰城、湖南冷水江、山西柳林、晋城、河北唐山、峰峰、河南焦作、陕西韩城等地钻探煤层气井,柳林、晋城、阜新开展小井组试验;

2000~2005年开发试验阶段:在山西沁水、陕西韩城、辽宁阜新开展了开发先导试验工作;

2006年至今规模开发阶段:沁水煤层气田、鄂东煤层气田韩城区块、柳林区块、辽宁阜新、铁法等地煤层气地面开发初步形成规模并进入商业开发阶段,特别是2007年国家出台政补贴政策,每生产1方煤层气国家补贴0.2元,极大地调动了生产企业的积极性,纷纷加大投入,煤层气产业进入快速发展阶段。2010年全国煤层气产量达到15亿方。

2 煤层气开发技术现状

在多年的勘探开发实践中,针对我国煤层气地质特点,逐步探索出适合我国配套工艺技术,如钻井完井、地面建设、集输处理等,形成了以中国石油、中联煤层气、晋煤集团等大型国有煤业集团、有实力的大型国际能源公司为代表的煤层气开发实体,以及煤层气钻井完井、地面建设、压缩运输等煤层气技术服务队伍,总体已经具备1000m以浅煤层气开发和产业化发展的条件。

不同演化程度的煤层煤岩性质不同,主要表现在煤岩的压实程度、机械强度、吸附能力等方面,其含气性、渗透性、井壁稳定性有很大差别(王一兵等,2006),因此不同煤阶的煤层气要求用相应的技术手段来开发。经过多年的探索与发展,国内已初步形成针对不同地质条件和煤岩演化程度的煤层气开发钻井完井、压裂改造、排技术系列。

2.1 钻井完井技术

2.1.1 中低煤阶高渗区空气钻井裸眼/洞穴完井开煤层气技术

国内低煤阶区煤层渗透率一般大于10mD,中煤阶高渗区煤层渗透率也能大于5mD,对于此类高渗煤层的煤层气开,一般不需压裂改造(低煤阶煤层机械强度低,压裂易形成大量煤粉堵塞割理),可对煤层段裸眼下筛管完井或用洞穴完井方式,根据煤层在应力发生变化时易坍塌的特点造洞穴,扩大煤层裸露面积,提高单井产量;钻井施工时用空气/泡沫钻井,既可提高钻速,又可有效减小煤层污染。

裸眼洞穴完井在国外如美国圣胡安盆地、粉河盆地的一些煤层气田开发中应用取得了良好效果(赵庆波等,19,1999),特别是在高渗、超压的煤层气田开发中得到很好的应用效果。

常用的井身结构有两种:

(1)造洞穴后不下套管,适用于稳定性较好的煤储层,是目前普遍用的井身结构;

(2)造洞穴后下入筛管,可适用于稳定性较差的储层。

这一技术在国内鄂尔多斯盆地东缘中煤阶、湖南冷水江、新疆准噶尔南部进行试验,效果都不理想,需要进一步探索、完善。

2.1.2 中高煤阶中渗区大井组直井压裂开煤层气技术

中高煤阶中渗区煤层渗透率一般0.5~5mD,用套管射孔加砂压裂提高单井产量效果最明显。其技术关键在于钻大井组压裂后长期、连续抽排,实现大面积降压后,煤层吸附的甲烷气大量解吸而产气。这一技术在国内应用最广泛,技术最成熟。沁水盆地南部、鄂尔多斯东缘韩城、三交、柳林地区,辽宁阜新含煤区刘家区块等大多数深度小于1000m的煤层气井用这一技术效果好,多数井获得了单井日产2000~10000m3/d的稳定气流,数百口井已稳产5~10年。

2.1.3 中高煤阶低渗区多分支水平井开煤层气技术

该技术主要适用于机械强度高、井壁稳定的中高煤阶含煤区,通过钻多分支井增加煤层裸露面积,沟通天然割理、裂隙,提高单井产量和收率,效果相当显著。同时,对于低渗(<0.5mD)薄煤层(<2m)地区,也是解决单井产量低、经济效益差的主要技术手段。

煤层气多分支水平井是指在一个或两个主水平井眼旁侧再侧钻出多个分支井眼作为泄气通道,分支井筒能够穿越更多的煤层割理裂缝系统,最大限度地沟通裂缝通道,增加泄气面积和气流的渗透率,使更多的甲烷气进入主流道,提高单井产气量。多分支水平井集钻井、完井和增产措施于一体(王一兵等,2006),是开发煤层气的主要手段之一。该技术具有三大技术优势:一是可以提高单井产量,约为直井的6~10倍,同时减少钻前工程、占地面积、设备搬安、钻井工作量和钻井液用量,节约套管和地面管线及气田管理和操作成本,从而提高开发综合效益;二是可以加快气速度,提高收率。用直井需要15~20年才能出可储量的80%,但用分支水平井仅需5~8年可出70%~80%(李五忠等,2006),而且可以在很大程度上提高煤层气的收率;三是多分支水平井的水平井眼不下套管,不压裂,避免压裂对煤层顶底板造成伤害,便于后续的煤,是先气后煤的最佳配套技术。

目前我国在沁水盆地、鄂尔多斯盆地东缘、宁武盆地等煤层埋深300~800m的地区已完成多分支水平井100余口,沁水盆地南部单井日产量达到0.8万~5.5万m3,最高日产可达到10万m3,比直井压裂方法单井产量提高4~10倍。

2.2 储层保护技术

2.2.1 煤层气空气钻井技术

主要有空气钻井和泡沫钻井技术,主要优点是可实现欠平衡钻井,煤层损害小、钻速快、钻井周期短,综合钻井成本低。但空气/泡沫钻井也存在局限性,并不是任何地层都适用。由于空气/泡沫不能携带保持井眼稳定的添加剂,所以不能直接用空气钻穿不稳定地层。当钻遇含水层时,岩屑及更细的粉尘会变为段塞。由于液体在环空中出现,会润湿水敏性页岩,这会导致井塌而卡钻。而且湿岩屑会粘附在一起,在钻杆外壁上形成泥饼环,不能被空气从环空中带上来,当填充环空时,阻止了空气流动并产生卡钻。而且随着这些间歇的空气大段塞沿着井眼向上运移,它们会堵塞地面设备并且对井壁产生不稳定性效应。因此,空气钻井的关键在于保持井壁的稳定性。

2.2.2 水平井注气保压欠平衡保护技术

多分支水平井主井眼与洞穴井连通后,在水平井眼钻进过程中,在洞穴直井下入油管,洞穴之上下入封隔器,然后通过油管向洞穴直井注气,从水平井环空排气的钻井液充气方式,保持水平井眼环空压力,保证井眼稳定性(图3)。

图3 欠平衡钻井剖面示意图

空气压缩机将空气从直井注入,压缩空气、煤屑与清水钻井液在高速上返过程中充分混合,形成气、液、固相三相环空流动。原则上返出混合流体经旋转头侧流口进入液气分离器进行分离,混合液流从液体出口流入振动筛,气体夹杂煤粉从气流管线进入燃烧管线排放。在燃烧管线出口处,有大排量风机,将排出的气体尽散。

如果三相分离器分离返出混合流体不明显,液体为雾状水滴时将分离器液流管线关闭,从分离器底部沉砂口进行煤屑和废水的收集和处理,气体夹杂煤粉从气体管线进入燃烧管线排放。如果分离器处理能力有限或燃烧管线堵塞,可临时使用节流管线应急排放混合物。在施工过程中要求地面管线畅通,各种阀门灵活可靠。

2.3 煤层气井水力压裂工艺技术

2.3.1 针对煤储层特征的压裂液

压裂液是煤层水力压裂改造的关键性环节,其主要作用是在目的层张开裂缝并沿裂缝输送支撑剂,因此着重考虑流体的粘度性质,不仅在裂缝的起裂时,具有较高的粘度,而且在压裂流体返排时具快速降低的性能。然而,成功的水力压裂改造技术还要求流体具有其他的性质。除了在裂缝中具有合适的粘度外,在泵送时还应具有低的摩擦阻力,能很好地控制流体滤失,快速破胶,施工结束后迅速返排出来等性能,同时应在经济上可行。

压裂液选择的基本依据是:对煤层气藏的适应性强,减少压裂液对储层的伤害;满足压裂工艺的要求,达到尽可能高的支撑裂缝导流能力。根据目前煤层气井储层的特点,压裂液研究应着重考虑以下几个方面:

储层温度25~50℃,井深300~1000m,属低温浅井范畴。因此,要求压裂液易于低温破胶返排,满足低温压裂液体系的要求,并且也考虑压裂液的降摩阻问题;煤层气属于低孔隙度、低渗特低渗透率储层,要求压裂液具有好的助排能力,并且压裂液彻底破胶;储层粘土矿物含量小,水敏弱,水化膨胀不是压裂液的主要问题,但储层低渗、低孔、压裂液的破胶返排、降低压裂液的潜在二次伤害是主要问题;要求压裂液滤失低,提高压裂液效率。

为了满足煤层压裂大排量、高砂比的施工要求,压裂液在一定温度下要具有良好的耐温、耐剪切性能,以满足造缝和携砂的要求;同时提高压裂液效率,控制滤失量。考虑较低的摩阻压力损耗,要求压裂液具有合适的交联时间,以保证尽可能低的施工泵压和较大的施工排量;用适当的破胶剂类型及施工方案,在不影响压裂液造缝和携砂能力的条件下,满足压后快速破胶返排的需要,以降低压裂液对储层和支撑裂缝的伤害;要求压裂液具有较低的表面张力,破乳性能好,有利于压裂液返排;压裂液在现场应具有可操作性强、使用简便、经济有效、施工安全、满足环保等要求。

2.3.2 煤层压裂方案优化

针对一个区块的压裂方案,优化研究的总体思路是:在目标区块压裂地质特点分析的基础上,针对该区块主要的地质特点进行各工艺参数的优化研究。首先针对目标区块的物性特征确定优化的缝长和导流能力,然后逐一优化各施工参数,包括排量、规模、砂比、前置液百分数等,并且研究提出一系列协助实现优化缝长和导流能力,并保证支撑剖面尽可能实现最优的配套技术措施。

压裂施工参数的优化是指以优化缝长和导流能力为目标函数,通过三维压裂分析与设计软件,优化压裂施工参数。

前置液量决定了在支撑剂达到端部前可以获得多少裂缝的穿透深度。合理的前置液量是优化设计的基础和保证施工成功的前提。前置液用量的设计目标有两个:一是造出足够的缝长,二是造出足够宽度的裂缝,保证支撑剂能够进入,并保证足够的支撑宽度,满足地层对导流能力的需求。

排量的优化对压裂设计至关重要。研究试验发现,变排量施工可以对实现预期的缝长和裂缝高度有很好的控制。另一个重要作用是抑制多裂缝的产生,减少近井摩阻,有最新文献资料表明,通过先进的裂缝实时监测工具的反应,当排量超过一定值时,多裂缝的条数与排量呈正比关系。煤层易产生多裂缝的储层尤其应该尝试取该项技术。

加砂规模优化包括平均砂液比的优化和加砂程序优化。平均砂液比的优化从施工安全角度,即从滤失系数和近井筒摩阻两个方面考虑,借鉴国内外施工经验,在煤层可能的滤失系数范围内,平均砂比20%~25%施工风险低。加砂程序优化必须将压裂设计研究中所有考虑因素和技术细节充分地体现出来。第一段砂液量的设计至关重要。如起步砂液比过高(或混砂车砂液比计量有误差),因开始加砂时可能造缝宽度不足,或起步砂液量过早滤失脱砂,会造成早期砂堵或中后期砂堵的后果;反之,如起步砂液比过低,可能造成停泵后第一批支撑剂还未脱砂,使停泵后裂缝仍有继续延伸的可能,使裂缝的支撑剖面更不合理。同时,滤失伤害也会增大。因此,起步砂液比的设计很重要。而从施工安全角度考虑,一般的做法是让第一段支撑剂进入裂缝后先观察一段时间,如压力无异常情况,再考虑提高阶段砂液比。

2.4 煤层气井抽排气技术

煤层气以吸附状态为主,煤层气的产出机理主要包括脱附、扩散、渗流三个阶段(赵庆波等,2001),煤层气井产气需要解决的关键问题是:

(1)降低煤层压力至临界解吸压力以下;

(2)保持煤层水力裂缝及天然割理系统内不至于压力下降过快、过低而致使其渗透率急剧下降;

(3)有一定长的降压时间。

因此,煤层气气工程应结合不同煤岩特性和室内研究工作,合理确定排设备,控制动态参数,发挥煤层产气能力,同时在排中要控制煤粉产生,减少煤储层应力敏感性对渗透性的不利影响。

煤层气井开中煤粉迁移是普遍存在的现象。为了减少煤粉迁移对排的影响,排初期应保持液面缓慢稳定下降,生产阶段应避免液面的突然升降和井底压力激动,控制煤粉爆发,使之均匀产出并保持流动状态,防止堵塞煤层渗流通道和排管柱。

煤层具有较强的塑性变形能力,应力敏感性强,在强抽排条件下会引起渗透性下降。为了促使煤层气井的高效排(李安启等,1999),应保证煤层内流体压力持续稳定下降,避免由于下降过快导致煤层割理和裂缝闭合引起煤层渗透性的急剧下降。不同煤层具不同的敏感性,需通过实验和模拟确定最佳的降液速率。如:数值模拟确定晋试7井解吸压力以上每天降液速度不超过30m,解吸压力以下每天降液速度不超过10m;井底流压不低于1MPa。一般控制降液速度每天不超过10m,越接近煤层,降液速度越慢,当液面降至煤层以上20~30m时,稳定液面排,进入稳定产气阶段后根据实际情况再适当降低液面深度。

3 煤层气开发技术发展趋势

与美国、加拿大、澳大利亚等煤层气工业发展较快的国家相比,我国煤层气地质条件复杂,主要表现在成煤期早、成煤期多,大部分煤田都经历多期次构造运动,煤层生气、运移、保存和成藏规律都很复杂。多年的勘探开发试验证实,煤层气富集区分布、高渗区分布都具有很强的不均一性,多数煤层气富集区渗透率都很低,导致大多数探井试效果差,勘探成功率低。针对国内煤层气特点,提高我国煤层气开效率的煤层气开发技术研究应包括以下几个方向。

3.1 高丰度煤层气富集区地质评价技术

高丰度煤层气富集区预测一般是通过地质学、沉积学、构造动力学、地球物理学、地下水动力学、地球化学等多学科联合研究,结合地震处理与解释方法,寻找煤层发育、盖层稳定、成煤期、生气期与构造运动期次相匹配的适合煤层气聚集的煤层气富集区。随着各地区勘探程度和地质认识程度的提高,一些开发区块或即将进入开发的区块,通过二维、三维地震储层反演与属性提取方法,在煤层气富集区预测孔隙、裂缝发育的高渗区,优化开发井网和井位部署,可有效指导煤层气高效开发。

3.2 提高煤层气开效率的技术基础研究

以高丰度煤层气富集区为主要研究对象,以煤层气富集区形成机理和分布规律、开过程中煤层气储层变化、流体相态转换、渗流和理论相应为重点研究内容,通过化学动力学、渗流力学等多学科联合与交叉研究,宏观研究与微观研究相结合,开展系统的野外工作、测试分析和理论研究。以煤层气井底压力响应为主要研究对象,利用多井试井技术和数值模拟技术,从静态和动态两个方面开展煤层气开发井间干扰机理与开发方式优选研究。研究适合我国地质条件的提高煤层气开效率的储层改造基础理论,将有效指导煤层气开发技术的进步。

3.3 煤层气低成本高效钻井技术研究

针对当前300~1000m深度为主的煤层气,开展空气钻井技术攻关,发展车载轻型空气钻机。用岩心实验、理论分析与生产动态分析相结合的方法,总结以往煤层气钻井设计方法和施工工艺,跟踪国内外多分支水平井、U型井、小井眼短半径水力喷射钻井、连续油管钻井等先进钻井技术,分析增产效果,优选适用技术。同时,还要考虑超过1000m深度的煤层气的开发技术。

3.4 煤层高效改造技术研究

通过煤层及顶底板力学实验与压裂液配伍性实验数据,分析煤层伤害的主要机理,研发出适合不同地质条件下煤层压裂的新型压裂液体系。结合典型含煤盆地煤层的地质特点,探索适合煤层气压裂改造的工艺技术。

参考文献

李安启,路勇.1999.中国煤层气勘探开发现状及问题剖析.天然气勘探与开发,22(3):40~43

李五忠,王一兵,田文广等.2006.沁水盆地南部煤层气可性评价及有利区块优选.天然气,3(5):62~64

王一兵,孙景民,鲜保安.2006.沁水煤层气田开发可行性研究.天然气,2(1):50~53

王一兵,田文广,李五忠等.2006.我国煤层气选区评价标准探讨.地质通报,25(9~10):1104~1107

赵庆波.1999.煤层气地质与勘探技术[M].北京:石油工业出版社

赵庆波等.19.煤层气勘探开发技术.北京:石油工业出版社

赵庆波等.2001.中国煤层气勘探.北京:石油工业出版社

页岩气开发现状及开技术分析

梁劲1 王宏斌1,2 梁金强1

(1.广州海洋地质调查局 广州 510760;2.中国地质大学(北京)北京 100083)

第一作者简介:梁劲,男,11年生,高级工程师,1995年毕业于成都理工学院信息工程与地球物理系应用地球物理专业,主要从事天然气水合物调查与研究工作。

摘要 本文用Jason 反演技术对南海北部陆坡A 测线纵波速度进行计算,结合BSR、振幅空白带以及波形极性反转等多种水合物赋存信息的分析,对水合物成矿带的速度特征进行了综合研究,结果表明:低速背景中的高速异常,是天然气水合物赋存的重要特征;高速异常体一般呈平行于海底的带状分布;在高速异常的内部,速度也是不断变化的。一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,反映在水合物矿带内部,水合物饱和度由矿体中心向边缘逐渐降低的特征。本文的研究成果进一步表明高精度速度分析不仅可以帮助寻找水合物矿点,还可以进一步判定水合物的富集层位。

关键词 Jason 反演技术 天然气水合物 速度分析

1 前言

天然气水合物是在低温、高压环境下,由水的冰晶格架及其间吸附的天然气分子组成的笼状结构化合物,广泛分布于海底和永久冻土带。温度和压力是天然气水合物形成和保存最重要的因素(王宏斌等,2004)。针对天然气水合物的野外调查及研究表明:高分辨率的地震勘探方法是天然气水合物调查评价中行之有效的方法。地震反演技术一直是地震勘探中的一项核心技术,其目的是用地震反射资料反推地下的波阻抗、速度、孔隙度等参数的分布,从而估算含天然气水合物层参数,预测天然气水合物分布状况,为天然气水合物勘探提供可靠的基础资料。常用的地震反演技术有Jason、Strata、Seislog和ISIS等,其中Jason反演技术在含天然气水合物层预测中因其分辨率高而得到广泛推崇,它主要由有井约束和无井约束两种方法组成(廖曦等,2002)。

速度异常是判断天然气水合物是否赋存的重要条件之一。结合BSR(Bottom Simulating Reflector)特征、波形极性特征、振幅特征以及AVO特征等目前已成为判断是否存在天然气水合物层主要手段(史斗等,1999)。大量的测试数据显示:水合物的速度与冰的速度较为接近,而比水高。与含水或含游离气沉积层相比,含水合物沉积层的密度降低,声波速率增大,含水合物层的地层速度往往比一般的地层速度高,含水合物沉积层的下部由于充填了水或气,而使水合物底界面出现速度负异常。因此,地层中速度反转是水合物赋存的一个地球物理标志。含水合物地层的声波速度与水合物的含量有关,水合物含量越高,其声波速度越高。从速度方面看,BSR是上覆高速的含水合物地层与下伏较低速的含水层或含气层之间的分界面。通常,海洋中浅层沉积层的地震纵波速度为1600~1800m/s,如果存在水合物,地震波速度将大幅提高,可达1850~2500m/s,如果水合物层下面为游离气层,则地震波速度可以骤减200~500m/s。因此,在速度剖面上,水合物层的层速度变化趋势呈典型的三段式,即上下小、中间大的异常特征(张光学等,2000)。西伯利亚麦索雅哈气田的资料表明,在原为含水砂层内形成水合物之后,其纵波的传播速度会从1850m/s提高到2700m/s;而在胶结砂岩层,这种速度会从3000m/s提高到3500m/s。深海钻探的570站位的测井结果表明,由含水砂岩层进入含水合物砂岩层时,密度由1.79g/cm3降低到1.19g/cm3,声波传播速度从1700m/s提高到3600m/s,且电导率剧烈下降。

Cascadia海域ODP889站位的VSP测井资料反映水合物底界为强烈的负速度界面,速度从水合物沉积物层的1900m/s陡降到含游离气层的1580m/s,由于VSP测井为地震测井,受钻井因素的影响较少,因此认为VSP测井真实地反映了水合物沉积层底界的速度变化(陈建文等,2004)。

国土部广州海洋地质调查局在2001~2004年在南海北部陆坡进行10000多公里的天然气水合物高分辨地震调查。本研究利用Jason反演技术,通过对南海北部陆坡区的地震速度资料的精细分析,在已圈定BSR分布范围的基础上研究陆坡区各沉积层的速度特征,最后对速度值与水合物的关系进行了分析和探讨。

2 方法原理

纯天然气水合物的密度(0.9g/cm3)和海水密度相近,而游离气的含量又十分有限,这就决定了产生BSR的波阻抗差主要由速度造成。速度反演技术的特点是在无井约束时,以地震解释的层位为控制,对所有的地震同相轴来进行外推内插来完成波阻抗反演,这样就克服了地震分辨率的限制,最佳的逼近了测井分辨率,同时又使反演结果保持了较好的横向连续性。速度反演技术的主要原理是:①通过最大的似然反褶积求得一个具有稀疏特性的反射系数系列;②通过最大的似然反演导出波阻抗;③通过波阻抗计算速度。该方法的主要优点是能获得宽频带的反射系数,是一种基于模型的反演,具有多种建模方法,对所建模型进行比较分析,并使地质模型更趋合理,反演结果更加真实可靠(郝银全等,2004)。

波阻抗反演方法的出发点是认为地下的反射系数是稀疏分布的,即地层反射系数由一系列叠加于高斯背景上的强轴组成。具体反演是从地震道中,根据稀疏的原则抽取反射系数,与子波褶积生成合成地震记录,利用合成地震记录与原始地震道的残差修改反射系数,得到新的反射系数序列,然后再求得波阻抗。其具体步骤是:

设地层的反射系数是较大的反射界面的反射和具有高斯背景的小反射叠加组合而成的,根据这种设导出一个最小的目标函数(安鸿伟等,2002):

南海地质研究.2006

式中:R(K)为第一个样点的反射系数,M为反射层数,L为样总数,N为噪音变量的平方根,λ为给定反射系数的似然值。

最大的似然反演就是通过转换反射系数导出宽带波阻抗的过程。如果从最大的似然反褶积中求得的反射系数式R(t),则波阻抗:

Z(i)=z(i-1)×(1+R(i))/R(1-i) (2)

利用波阻抗和速度的关系式:

v=Z(i)/ρ (3)

即可得到速度值。其中,ρ为地层密度,可从区域测井资料结合该测线重力资料反演求取。

在上述过程中为了得到可靠的反射系数估算值,可以单独输入波阻抗信息作为约束条件,以求得最合理的速度模型。一方面,速度反演结果是一个宽频带的反射序列和波阻抗及速度数据,同时加入了低频分量,使反演结果更能正确反映速度变化规律;另一方面,它有多种质量控制方法,具体表现为监控子波的选取、同相轴的连续追踪、反演结果准确性的判断和提供多种交汇显示的相关性分析。所以利用速度反演可对地震剖面上任一相位进行速度反演,在每一个CDP点都可得到任一个同相轴速度数据,并利用二维的反射波的速度层析成像反演方法得到高度连续的速度剖面,如果地震测线足够密,还可利用三维速度反演得到速度体图像。

3 实现过程

3.1 初始模型的确立

在地质规律的指导下,利用地震和测井资料开展沉积特征分析和沉积旋回划分;建立岩石-电性关系,进行砂层组和单砂层对比;在地震剖面上提取各含油砂层组反射波属性,建立地震属与矿体的关系,实现地震-测井综合预测矿体平面分布厚度,开展层间矿体组外推预测;建立初始速度场;在地震属性约束下开展地震反演,反演层间小层矿体厚度。细分层反演层位的标定正确与否直接影响反演结果的精度。因此,在反演过程中对子波提取、能谱特点、信噪比、频谱及反射系数的研究至关重要(闫奎邦等,2004)。技术路线流程如图1所示:

3.2 初始速度场的获得

初始速度场的获得首先要对速度谱进行解释,速度谱的解释和取值是否合理,将直接影响均方根速度的计算精度。具体步骤如下:

1)速度谱的解释先从地质条件简单、反射层质量好、能量团强、干扰少的剖面段开始,绘制叠加速度-反射时间曲线,并逐渐向外扩展;

2)结合地震剖面的反射特征,判断速度极值点是否正确,并选择读取能量团最大的极值点。排除干扰波能量团,从而求得有效波的叠加速度;

3)对相邻速度谱进行比较,通过比较速度谱曲线的形状、相同反射层的速度极值等方法予以检查和修改。

4)每隔40个CDP拾取一组数据,利用地震剖面上的反射倾角数据对它们进行校正,便可得到均方根速度(梁劲等,2006)。

图1 速度反演技术线路流程图

Fig.1 The flow chart of the velocity inversion of technical route

3.3 子波的提取

子波提取时,要使能量集中于子波的主瓣,与地震子波形态吻合。如果所提子波近于零相位,则从波峰向两侧能量衰减较快,波峰两侧波形对称;在子波的能谱特征分析,要使能量都集中在地震波的主频范围内;有井资料时,要对井资料都作了子波与地震波自动关联质量控制。保证子波能谱与地震波能谱相吻合,是反演中较为重要的一方面,子波能谱的峰值与地震波主频的能谱峰值相吻合。首先了解合成记录与地震记录之间的偏差。通过合成记录与地震记录之间的偏差分析,对Jason反射系数偏差、能谱偏差进行进一步的校正,使合成记录与地震记录之间的偏差减小。然后通过反射系数与地震资料之间偏差分析,取相应的手段校正,使地层与合成记录反射系数相吻合。再进行信噪析,使反演处理后的信噪比得到最大限度的提高。通过一系列质量控制手段,使各油层合成记录与地震记录的标定精度得到了较大的提高。

关于速度反演可信程度,不能完全由反演方法确定,关键在于获取地震记录的质量和反演前处理流程的振幅保真度。另一个影响因素是数值模拟结果应当是比较准确的,这与计算方法有关,也与子波拾取和地质构造模型有关。至于反演结果的灵敏度,主要由拟合误差值和收敛速度来判断。如果给定的初始模型正确,即与实际地质结构一致,则拟合的误差较小且收敛速度快。本文工作由于受实际情况限制,没有实际的测井资料验证,因此反演所得速度的准确性和精度会受到一定程度的影响。

4 速度剖面特征

运用多种特殊地震成像综合分析,是天然气水合物地震资料解释的关键技术。目前一般用识别BSR、振幅空白带、波形极性反转、速度异常、波阻抗面貌和AVO等天然气水合物地震相应特征来综合分析沉积物中是否含有水合物。高精度的层速度分析可帮助判定水合物的富集层位,速度及振幅异常结构是水合物与下伏游离气共同作用形成的特殊影像,剖面上表现为“上隆下坳”结构,多层叠合构成一明显的垂向“亮斑”这一特殊成像结构在未变形的水合物盆地内较适用于寻找水合物矿点,并可据此定量估算水合物盆地内水合物的数量,分析BSR上下的详细速度结构,是水合物地震资料综合解释的重要手段(张光学等,2003)。

图2 南海北部陆坡测线A道积分剖面

Fig.2 Trace integration profile of the line A in north slope of the South China Sea

图2是南海北部陆坡测线A的地震反射道积分剖面,从图中可以看出,该剖面中部及右下角距海底大约350ms处出现一强振幅反射波,大致与海底反射波平行,与地层斜交,BSR特征明显。在波形极性方面,海底反射波和BSR都表现为成对出现的强振幅双峰波形特征,海底反射波表现为蓝红蓝特征,而BSR表现为红蓝红特征,这表明相对于海底,BSR显示出负极性反射同相轴,即所谓的极性反转(与海底反射相反)。反射波的极性是由反射界面的反射系数决定的,而反射系数则与界面两侧的波阻抗差有关。实际上,海底和BSR都是一个强波阻抗面,海底是海水和表层沉积物的分界面,上部为低速层,下部为相对高速层,反射系数为正值;BSR是含水合物层与下部地层(或含气层)的分界面,上部为高速层(水合物成矿带是相对高速体),下部为相对低速层(如含游离气,则速度更低),反射系数为负值,因此造成了BSR和海底反射波的极性相反现象(沙志彬等,2003)。图3是用速度反演法反演出来的纵波速度剖面,该速度剖面明显显示出一近似平行于海底的相对高速地质体,其位置恰好在BSR上方。高速地质体的纵波速度大约在2000~2400m/s,其上面的低速层的纵波速度大约在1500~1800m/s,而下面的低速层的纵波速度大约在1500~1900m/s,没有明显的游离气存在特征,但根据其高速地质体特征、BSR以及波形极性反转分析,可以认为南海北部陆坡测线A的相对高速地质体极可能是水合物成矿带。

图3 用速度反演法计算的南海北部陆坡测线A纵波速度剖面

Fig.3 P velocity profile of the line A in north slope of the South China Sea computed by velocity inversion

由图3可见,水合物成矿带内部速度是变化的,表明水合物分布不均匀,呈平行于海底的带状分布,中心速度最高,由中心到边缘速度逐渐降低。海底以下有3个近似平行海底的低速和高速带:①海底与高速体之间的相对低速带,为水饱和带;②水合物成矿带;③水合物成矿带下的低速带。水合物成矿带下面的低速带在速度剖面上没有明显的低速特征,由此推断水合物成矿带下可能不含游离气,或者是气体的饱和度很低。

5 结论

水合物的生成除了需要一定的温度和压力条件外,还需要大量的碳氢气体和充足的水。这就需要地层具有较高的孔隙度和渗透率。未固结沉积岩的孔隙度很高,渗透率大,具备水合物生成的物理条件。具备这种特征的未固结沉积岩的地震波速度较低,而含水合物地层的地震波速度增大。这就形成了水合物成矿带作为低速背景中的高速地质体特征。另外,水合物的生成受温度和压力控制,一般情况,等温面和等压面近似平行于海底,因此低速背景中近似平行于海底的相对高速地质体是水合物成矿带的特征(刘学伟等,2003)。

通过对南海北部陆坡A测线纵波速度的计算,并且结合BSR和振幅空白带识别以及波形极性反转等多种特殊地震成像进行综合分析,我们可以进一步了解水合物成矿带的速度特征:揭示水合物成矿带的高速异常一般呈平行于海底的带状分布,在高速异常的内部,速度也是不断变化的,一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,该现象反映在水合物矿带内部,水合物分布并不均匀,水合物饱和度由矿体中心向边缘逐渐降低。分析BSR上下的详细速度结构,是水合物地震资料综合解释的重要手段。高精度速度分析可帮助判定水合物的富集层位,较适用于寻找水合物矿点,并可据此估算水合物量。

参考文献

安鸿伟,李正文,李仁甫,等.2002.稀疏脉冲波阻抗反演在XY油田开发中的应用.石油物探,41(1):56~60

陈建文,闫桂京,吴志强,等.2004.天然气水合物的地球物理识别标志.海洋地质动态,6:9~12

郝银全,潘懋,李忠权.2004.Jason多井约束反演技术在油气储层预测中的应用.成都理工大学学报,31(3):2~300

梁劲,王宏斌,郭依群.2006.南海北部陆坡天然气水合物的地震速度研究[J].现代地质,20(1):123~129

廖曦,马波,沈浩,等.2002.应用Jason软件进行砂体及含气性预测.天然气勘探与开发,25(3):34~42

刘学伟,李敏锋,张聿文,等.2005.天然气水合物地震响应研究——中国南海HD152测线应用实例.现代地质,19(1):33~38

沙志彬,杨木壮,梁金强,等.2003.BSR的反射波特征及其对天然气水合物识别的应用.南海地质研究,15(1):55~61

史斗,郑军卫.1999.世界天然气水合物研究开发现状和前景.地球科学进展,14:330~339

王宏斌,梁劲,龚跃华,等.2005.基于天然气水合物地震数据计算南海北部陆坡海底热流.现代地质,19(1):67~73

闫奎邦,李冬梅,吴小泉.2004.Jason反演技术在岩性识别中的应用.石油物探,43(1):54~58

张光学,黄永样,陈邦彦,主编.2003.海域天然气水合物地震学.北京:海洋出版社

张光学,文鹏飞.2000.南海甲烷水合物的地震特征研究,首届广东青年科学家论坛论文集,中国科学技术出版社

The Application of Jason Inversion Technology in Velocity Analysis of Gas hydrate

Liang Jin1 Wang Hongbin1,2 Liang Jinqiang1

(1.Guangzhou Marine Geological Survey,Guangzhou,5107602.China University of Geosciences(Beijing),Beijing,100083)

Abstract:The P velocity of A seismic profile in the north slope of the South China Sea were calculated by Jason inversion method.The velocity characterostic of the gas hydrate bed was researched in detail based on the calculated result and the information of gas hydrate existing including BSR,amplitude blanking and polarity reversion of the weform.Research shows that:The abnormity of higher velocity in the background of lower velocity is an important characteristic of gas hydrate existing;The abnormity of higher velocity which distribute as a belt usually parallel to the seafloor;The velocity changes gradually at the inner of the abnormity of higher velocity with the highest velocity at the center of the abnormity whereas the lowest velocity at the margin of it,which suggests that the saturation of gas hydrate decreases gradually from the center to the margin.The result that mentioned above suggest that high resolution velocity analysis not only help to search the hydrate spot but also help to estimate the rich layer of gas hydrate.

Key Words:Jason Inversion Technology Gas hydrate Velocity Analysis

 勘探目标评价与风险分析方法

史进1 吴晓东1 孟尚志2 莫日和2 赵军2

作者简介:史进,1983年生,男,汉族,山东淄博人,中国石油大学(北京)石油天然气工程学院博士生,主要从事煤层气、页岩气开发方面的研究工作。E-mail:shijin886@163,电话:18901289094。

(1.中国石油大学(北京)石油工程教育部重点实验室 北京 1022492.中联煤层气有限责任公司 北京 100011)

摘要:页岩气是一种储量巨大的非常规天然气,但是页岩气藏储层结构复杂,多为低孔、低渗型,开发技术要求很高。本文简述了国内外页岩气开发现状,分析了页岩气成藏机理以及开发特点,重点介绍了国外主要用的页岩气开技术,包括页岩气的储层评价技术、水平井钻井技术、完井技术以及压裂技术这几个方面,其中水平井钻井以及压裂技术是最为重要的。最后本文指出了中国页岩气开发急需解决的几个方面的问题。

关键词:页岩气 开技术 储层评价 水平井增产 完井技术 压裂技术

Analysis on Current Development Situation and Exploitation Technology of Shale Gas

SHI Jin WU Xiaodong MENG Shangzhi MO Rihe ZHAO Jun

(1.Petroleum engineering institute, China University of Petroleum, Beijing 102249,2.China United Coalbed Methane Co., Ltd., Beijing 10001 1, China)

Abstract: The shale gas is a kind of non-conventional with giant amount of reserves,but the shale reservoir has complex structure with low porosity and low Permeability , so it needs advanced technology.This article sum- marizes current situation of shale gas development both in and abroad,analyses the gas generation and development characteristic of shale gas,mainly introduces gas exploration and development of technology,including reservoir e- valuation technology, horizontal well stimulation techniques, completion technology as well as fracturing tech- niques.At last, the paper points out the urged problem needed to be sloved for china's shale gas development.

Keywords: Shale gas;development technology; Reservoir evaluation; Horizontal well stimulation; comple- tion technology; fracturing techniques.

1 前言

地球上各种油气在地层分布的位置各不相同(图1),随着全球能源的需求量增大,页岩气作为一种非常规能源越来越受到人们的重视。页岩气是指主体位于暗色泥页岩或高碳泥页岩中,以吸附或游离状态为主要存在方式的天然气聚集[1]。世界页岩气很丰富,但尚未得到广泛勘探开发,根本原因是致密页岩的渗透率一般很低。但近几年来,页岩气的开已经成为全球开发的一个热点。由于页岩气的赋存、运移以及开机理与普通天然气有很大的不同,所以在勘探开发技术方面与普通天然气也有很大的差别。

图1 各种油气分布示意图

2 国内外页岩气勘探开发现状

2.1 国外页岩气开发情况

国外的页岩气开发以美国为主,美国是目前世界上唯一商业化开发页岩气的国家。美国第一口页岩气井可追溯1821年,钻遇层位为泥盆系Dunkirk页岩[2],井深仅8.2m。19世纪80年代,美国东部地区的泥盆系页岩因临近天然气市场,在当时已经有相当大的产能规模。但此后产业一直不甚活跃。直到20世纪70年代末,因为国际市场的高油价和非常规油气概念的兴起,页岩气研究受到高度重视,当时主要是针对FortWorth盆地Barnett页岩的深入研究。2000年以来,页岩气勘探开发技术不断提高,并得到了广泛应用。同时加密的井网部署,使页岩气的收率提高了20%,年生产量迅速攀升。2004年美国页岩气年产量为200×108m3,约占天然气总产量的4%;2007年美国页岩气生产井近42000口,页岩气年产量450×108m3,约占美国年天然气总产量的9%。参与页岩气开发的石油企业从2005年的23家发展到2007年的64家。美国相关专家预测,2010年美国页岩气产量将占天然气总产量的13%。图2是美国页岩气分布图。

美国的页岩气能够得到快速发展,技术上主要得益于以下四个方面:(1)减阻水压裂技术:携带非常少的添加剂,这样降低了成本,减少对地层的伤害,但携砂能力下降。(2)水平井替代了直井,长度从750m增加到了1600m。(3)10至20段,甚至更多的分段压裂大大提高了收率。(4)同步压裂时地层应力变化的实时监测。当然,这也离不开国家政策的支持,20世纪70年代末,美国在《能源意外获利法》中规定给予非常规能源开发税收补贴政策,而得克萨斯州自20世纪90年代初以来,对页岩气的开发不收生产税。

除了美国,加拿大是继美国之后较早规模开发页岩气的国家,其页岩气勘探研究项目主要集中在加拿大西部沉积盆地,横穿萨克斯其万省的近四分之二、亚伯达的全部和大不列颠哥伦比亚省的东北角的巨大的条带。另外,Willislon盆地也是潜在的气源盆地,上白平系、侏罗系、二叠系和泥盆系的页岩被确定为潜在气源层位。可以预测,在不久的将来加拿大西部盆地很可能发现数量可观的潜在页岩气。

2.2 中国页岩气开发现状

2009年以前,我国的页岩气开发以勘探为主,2009年12月,才正式启动页岩气钻井开发项目[3]。我国主要盆地和地区的页岩气量约为(15~30)×1012m3,中值23.5×1012m3,与美国的28.3×1012m3大致相当。预计到2020年,我国的页岩气年生产能力有望提高到150亿~300亿m3。页岩气在中国的分布在剖面上可分为古生界和中-新生界两大重点层系。在平面上可划分为南方、西北、华北-东北及青藏等4个页岩气大区。其中,南方及西北地区的页岩气(也包括鄂尔多斯盆地及其周缘)成藏条件最好。

我国南方地区是我国最大的海相沉积岩分布区[4],分布稳定,埋藏深度浅,有机质丰度高。四川盆地、鄂东渝西及下扬子地区是平面上分布的有利区。在中国北方地区,中新生代发育众多陆相湖盆,泥页岩地层广泛发育,页岩气更可能发生在主力产油气层位的底部或下部。鄂尔多斯盆地的中-古生界、松辽盆地的中生界、渤海湾盆地埋藏较浅的古近系等也属于有利区。

3 页岩气开发特点分析

3.1 页岩气成藏机理

页岩气成藏机理兼具煤层吸附气和常规圈闭气藏特征,但又与这两者有显著的区别(表1),显示出复杂的多机理递变特点。页岩气成藏过程中,赋存方式和成藏类型的改变,使含气丰度和富集程度逐渐增加。完整的页岩气成藏与演化可分为3个主要过程,吸附聚集、膨胀造隙富集以及活塞式推进或置换式运移的机理序列。成藏条件和成藏机理变化,岩性特征变化和裂缝发育状况均可对页岩气藏中天然气的赋存特征和分布规律有控制作用。

图2 美国的页岩气分布

表1 页岩气与其他天然气对析

3.2 页岩气开发特点

页岩气储层显示低孔、低渗透率的物性特征,气流的阻力比常规天然气大。因此,页岩气收率比常规天然气低[5]。常规天然气收率可以达到80%甚至90%以上,而页岩气仅为5%~40%。但页岩气开发虽然产能低,但具有开寿命长和生产周期长的优点,页岩气井能够长期以稳定的速率产气,一般开寿命为30~50年,美国地质调查局(USGS)2008年最新数据显示,Fort Worth盆地Barnett页岩气田开寿命可以达到80年。

页岩气中气体主要分为吸附态和游离态,和煤层气相似,但页岩气中的吸附气的比例较低,有的只有30%左右[6],裂缝中的水很少,主要为游离态的压缩气,页岩气的生产可以分为两个过程,第一个过程是压力降到临界解吸压力以前,产出的只有游离态的气体,它的生成基本与低渗透天然气无异,这个过程也是页岩气地层压力降低的过程,第二个过程是压力降到临界解吸压力以后,这时基质中的气体开始解吸出来,与裂缝中的气体一起被出,所以产气量会达到一个峰值,如图3所示,但是由于吸附气占的比例并不大,所以产气量又很快下降,最终的残余气饱和度中只有很小一部分是吸附气,因为和煤层气不同的是,气降压不可能使储层的压力降得很低。

图3 不同类型天然气藏的生产曲线示意图

4 主要页岩气勘探开发技术

页岩气的勘探开发技术与普通的气井的不同之处主要体现在页岩气储层评价技术、水平井钻井技术、完井技术以及压裂技术这几个方面,其中水平井钻井以及压裂技术最为重要。

4.1 储层评价技术

页岩气储层评价的两种主要手段是测井和取心。应用测井数据,包括ECS(Elemental Capture Spectroscopy)来识别储层特征[7]。单独的GR不能很好地识别出粘土,干酪根的特征是具有高GR值和低Pe值。成像测井可以识别出裂缝和断层,并能对页岩进行分层。声波测井可以识别裂缝方向和最大主应力方向,进而为气井增产提供数据。岩心分析主要是用来确定孔隙度、储层渗透率、泥岩的组分、流体及储层的敏感性,并分析测试TOC和吸附等温曲线,以此得到页岩含气量。

4.2 水平井钻井技术

页岩气储层的渗透率低,气流阻力比传统的天然气大得多,并且大多存在于页岩的裂缝中,为了尽可能地利用天然裂缝的导流能力,使页岩气尽可能多的流入井筒,因此开可使用水平钻井技术,并且水平井形式包括单支、多分支和羽状。一般来说,水平段越长,最终收率就越高。

水平井的成本比较高,但其经济效益也比较高,页岩气可以从相同的储层但面积大于单直井的区域流出以美国Marcellus页岩气为例,水平井的驱替体积大约是直井驱替体积的5.79倍还多。在用水平井增产技术过程中,水平井位与井眼方位一般选在有机质富集,热数度比较高、裂缝发育程度好的区域及方位。

4.3 完井技术

页岩气井的完井方式主要包括组合式桥塞完井、水力喷射射孔完井和机械式组合完井。组合式桥塞完井是在套管井中,用组合式桥塞分隔各段[8],分别进行射孔或压裂,这是页岩气水平井最常用的完井方法,但因需要在施工中射孔、坐封桥塞、钻桥塞,也是最耗时的一种方法。水力喷射射孔完井适用于直井或水平套管井。该工艺利用伯努利原理,从工具喷嘴喷射出的高速流体可射穿套管和岩石,达到射孔的目的。通过拖动管柱可进行多层作业,免去下封隔器或桥塞,缩短完井时间。

4.4 压裂技术

据统计,完井后只有5%的井具有工业气流,55%的井初始无阻流量没有工业价值,40%的井初期裸眼测试无天然气流,这是因为页岩气埋深大,渗透率过低。所以压裂对于页岩气来说是最为重要的。而且因为页岩气多用水平井开,因此页岩气压裂技术,主要包括水平井分段压裂技术、重复压裂技术、同步压裂技术以及裂缝综合检测技术(图4)。

4.4.1 水平井分段压裂技术

在水平井段用分段压裂,能有效产生裂缝网络,尽可能提高最终收率,同时节约成本。最初水平井的压裂阶段一般用单段或2段,目前已增至7段甚至更多。如美国新田公司位于阿科马盆地Woodford页岩气聚集带的Tipton-H223[9]井经过7段水力压裂措施改造后,增产效果显著,页岩气产量高达14.16×104m3/d。水平井水力多段压裂技术的广泛运用,使原本低产或无气流的页岩气井获得工业价值成为可能,极大地延伸了页岩气在横向与纵向的开范围,是目前美国页岩气快速发展最关键的技术。

4.4.2 重复压裂

当页岩气井初始压裂因时间关系失效或质量下降,导致气体产量大幅下降时,重复压裂能重建储层到井眼的线性流,恢复或增加生产产能,可使估计最终收率提高8%~10%,可储量增加30%,是一种低成本增产方法,压裂后产量接近能够甚至超过初次压裂时期,这是因为重复压裂可以发生再取向(图5),在原有裂缝的基础上,还会压开一些新的裂缝。美国天然气研究所(GRI)研究证实[10],重复压裂能够以0.1美元/mcf(1mcf=28317m3)的成本增加储量,远低于收购天然气储量0.54美元/mcf或发现和开发天然气储量0.75美元/mcf的平均成本。

图4 Barnett页岩压裂模式示意图

图5 重复压裂再取向

4.4.3 同步压裂

同步压裂技术最早在Barnet页岩气井实施,作业者在相隔152~305m范围内钻两口平行的水平井同时进行压裂。由于页岩储层渗透性差,气体分子能够移动的距离短,需要通过压裂获得近距离的高渗透率路径而进入井眼中。同步压裂用的是使压力液及支撑剂在高压下从一口井向另一口井运移距离最短的方法,来增加水力压裂裂缝网络的密度及表面积。目前已发展成三口井,甚至四口井同时压裂,用该技术的页岩气井短期内增产非常明显。

4.4.4 裂缝综合监测技术

页岩气井压裂后,地下裂缝极其复杂,需要有效的方法来确定压裂作业效果,获取压裂诱导裂缝导流能力、几何形态、复杂性及其方位等诸多信息,改善页岩气藏压裂增产作业效果以及气井产能,并提高天然气收率。

利用地面、井下测斜仪与微地震监测技术结合的裂缝综合诊断技术,可直接地测量因裂缝间距超过裂缝长度而造成的变形来表征所产生裂缝网络,评价压裂作业效果,实现页岩气藏管理的最佳化[11]。该技术有以下优点:(1)测量快速,方便现场应用;(2)实时确定微地震的位置;(3)确定裂缝的高度、长度、倾角及方位;(4)具有噪音过滤能力。

作为目前美国最活跃的页岩气远景区,沃斯堡盆地Barnett页岩的开发充分说明了直接及时的微地震描述技术的重要性。2005年,美国Chesapeake[12]能源公司于将微地震技术运用于一口垂直监测井上,准确地确定了Newark East气田一口水平井进行的4段清水压裂的裂缝高度、长度、方位角及其复杂性,改善了对压裂效果的评价。

5 中国页岩气开发亟需解决的问题

5.1 地质控制条件评价

我国页岩气勘探才刚刚起步,尽管页岩气成藏机理条件可与美国页岩气地质条件进行比对,但我国页岩气的主要储层与美国有很大区别,如四川盆地的页岩气层埋深比美国大,美国的页岩气层深度在800~2600m,四川盆地的页岩气层埋深在2000~3500m。因此需要建立适合于我国地质条件且对我国页岩气战略调查和勘探开发具有指导意义的中国页岩气地质理论体系。应重点研究我国页岩发育的构造背景、成藏条件与机理(成藏主要受控于页泥岩厚度、面积、总有机碳含量、有机质成熟度、矿物岩石成分、压力和温度等因素)、页岩成烃能力(如有机质类型及含量、成熟度等)、页岩聚烃能力(如吸附能力及影响因素等)、含气页岩区域沉积环境、储层特征、页岩气富集类型与模式,系统研究我国页岩气分布规律、潜力和评价方法参数体系等。

5.2 战略选区

作为可商业规模化开的页岩气,战略选区是页岩气勘探开发前的基础性、前瞻性工作,除了地质控制因素的考虑,还应特别重视页岩气开发可行性。我国页岩气起步阶段应首先要考虑海相厚层页岩中那些总有机碳含量大于1.0%、Ro介于1.0%~2.5%之间、埋深介于200~3000m之间、厚度大于30m的富含有机质页岩发育区;其次考虑海陆交互相富含有机质泥页岩与致密砂岩和煤层在层位上的紧密共生区;但同时要研发不同类型天然气多层合技术;对于湖相富含有机质泥页岩,重点考虑硅质成分高、岩石强度大、有利于井眼稳定的层系。

5.3 技术适应性试验

美国页岩气成功开发的关键原因之一在于水平井技术、多段压裂技术、水力压裂技术、微地震技术、地震储层预测技术、有效的完井技术等一系列技术的成功应用。但这些手段在中国是否会取得比较好的效果,还值得进一步的现场试验才能得出结果。中国页岩气的开发急需要研究出一套适合中国地质条件以及页岩气特点的开发技术,使分布广泛的页岩气量逐步转化为经济和技术可储量。

5.4 环保因素的考虑

对Barnett页岩开地区的研究表明,钻井和压裂需要大量的水,2000年在Bar-nett页岩中开页岩气需86.3×104m3的地表水和地下水,2007年这一用量增长了10倍多,约60%~80%的水会返回地面,其中含有大量的化学物质或放射性元素,会造成水污染,因此页岩气开发过程中对于环境的保护也是需要重视的问题。

6 结论

(1)美国页岩气的高速发展表明,除了天然气价格上涨、天然气需求增加以及国家政策扶持等因素外,主要得益于以下开发技术的进步与推广运用:水平井钻井与分段压裂技术的综合运用,使页岩开发领域在纵向和横向上延伸,单井产量上了新台阶;重复压裂与同步压裂通过调整压裂方位,能够改善储层渗流能力,延长页岩气井高产时期;裂缝监测技术能够观测实际裂缝几何形状,有助于掌握页岩气藏的衰竭动态变化情况,实现气藏管理的最佳化。

(2)目前中国的页岩气开发急需要解决以下几个方面的问题:地质控制条件评价、战略选区、技术适应性试验、环保因素的考虑,从而推动中国页岩气产业的快速发展。

参考文献

[1] 张金川, 薛会, 张德明等.2003. 页岩气及其成藏机理.现代地质, 17 (4): 466

[2] Carlson E S.Characterization of Devonian Shale Gas Reservoirs Using Coordinated Single Well Analytical Models: pro- ceedings of the SPE Eastern Regional Meeting,Charleston,West Virginia,[C] .1994 Copyright 1994,Society of Petroleum En- gineers, Inc., 1994

[3] 陈波, 兰正凯.2009.上扬子地区下寒武统页岩气潜力, 中国石油勘探, 3: 1~15

[4] 张金川, 金之钧, 袁明生.2004. 页岩气成藏机理和分布.天然气工业, 24 (7): 15~18

[5] Shaw J C,Reynolds M M,Burke L H.2006.Shale Gas Production Potential and Technical Challenges in Western Cana- da: proceedings of the Canadian International Petroleum Conference,Calgary,Alberta,[C]

[6] Jadpour F, Fisher D, Unsworth M.2007.Nanoscale Gas Flow in Shale Gas Sediments [J], 46 (10)

[7] Bustin A M M,Bustin R M,Cui X.2008.Importance of Fabric on the Production of Gas Shales: proceedings of the SPE Unconventional Reservoirs Conference, Keystone, Colorado, USA,[C] .Society of Petroleum Engineers

[8] Cipolla C L, Warpinski N R, Mayerhofer M J et al.2008.The Relationship Between Fracture Complexity, Reservoir Properties, and Fracture Treatment Design: proceedings of the SPE Annual Technical Conference and Exhibition, Denver, Colo- rado, USA,[C].Society of Petroleum Engineers

[9] 钱伯章, 朱建芳.2010. 页岩气开发的现状与前景.天然气技术, 4 (2): 11~13

[10] Lewis A M, Hughes RG.2008.Production Data Analysis of Shale Gas Reservoirs: proceedings of the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA,[C] .Society of Petroleum Engineers

[11] Mayerhofer M J,Lolon E,Warpinski N R et al.2008.What is Stimulated Rock Volume: proceedings of the SPE Shale Gas Production Conference, Fort Worth, Texas, USA,[C] .Society of Petroleum Engineers

[12] Arthur J D, Bohm B K, Cornue D.2009.Environmental Considerations of Modern Shale Gas Development: proceed- ings of the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana,[C] .Society of Petroleum Engineers

①张国华等.1998,石油和天然气勘探地质评价规范,北京,中国海洋石油总公司。

勘探目标评价和风险分析方法是石油公司的核心技术之一。自1998年中国海油建立了《石油和天然气勘探地质评价规范》以来,对石油和天然气勘探全过程中的地质评价,尤以其中包括的勘探目标评价和勘探风险分析工作起到了促进作用,是使勘探管理工作与国际接轨的重要技术环节。勘探目标评价与勘探风险分析浸透了商业性理念和相关的评价技术,近期集束勘探方法的产生和更进一步的价值勘探的提出,就是执行这一规范的直接成果。

一、石油和天然气勘探地质评价

油气储量的增长是任何一个油公司生存、发展的根本所在,世界上的各大油气公司,无一不将油气勘探工作放在首位,并把油气风险勘探视为一种商业经营活动,力求勘探工作优质高效,即用有限的资金投入而能获得更多的、有商业开价值的油气储量。

图5-32 油气勘探地质评价程序

中国海油一直在探索一套具有自己特点的油气勘探工作和管理模式,用以具体指导海上油气勘探工作。在总结勘探经验和吸取国外油公司管理经验的基础上,按照勘探工作要革新管理、优化结构、科技进步的指导方针,于1998年编制成此《规范》。它规定了中国海油在石油和天然气勘探全过程中的地质评价阶段及各阶段地质评价的目的、任务、程序、内容以及应用的技术、标准和应用的成果和要求。它适用于中国海油所进行的油气勘探活动中的地质评价工作。

一般而言,石油和天然气勘探地质评价的全过程,系指从某一特定区域的石油地质调查开始,到提交石油(或)和天然气探明储量为止的勘探活动中的地质评价工作。根据油气勘探活动的阶段性和地质评价的目的、任务,又将地质评价全过程进一步划分为区域评价、目标评价和油气藏评价三大阶段,具体阶段划分和工作程序见图5-32,各阶段的具体含义如下。

a.区域评价阶段:即从某一特定的地理区域(可以是盆地、坳陷、凹陷或其中的某一部分)的勘探环境和石油地质调查开始,到决定是否谋求区块油气探矿权为止的地质评价工作全过程。很明显,区域评价阶段的主要目的,在于谋求获得石油和天然气探矿权。

b.目标评价阶段:即从获得区块的油气探矿权后进行勘探目标优选开始,到预探目标钻后地质评价完成为止的地质评价工作全过程。当然,目标评价的主要目的,在于发现商业性油气藏。

c.油气藏评价阶段:即从预探目标的油气藏评价方案开始实施,到提交探明储量为止的地质评价工作全过程。油气藏评价阶段的主要目的,在于落实可供开发的石油和天然气探明储量。

二、区域评价

区域评价一般按资料准备、区域地质特征分析、含油气系统分析和勘探区块选择4个阶段循序进行(图5-33)。四个阶段的具体内容如下。

图5—33 区域评价程序

a.资料准备:为区域评价收集、提供有关投资环境、区域地质背景和各项有关的基础资料。

b.区域地质特征分析:阐明评价区的构造、沉积特点及其发育演化史。

c.含油气系统分析:确定评价区含油气系统及其油气潜力。

d.勘探区块选择:确定有经济开发前景的油气聚集区块,并谋求其油气探矿权。

在评价内容中,主要包括了资料准备,具体为各种资料收集、基础资料的补充和完善、建立区域评价数据库工作;区域地质特征分析,包括区域地层格架的建立、地震资料连片解释、沉积体系及岩相分析、表层构造和断裂体系分析、基底结构和盆地演化特点分析工作;含油气系统分析包括烃源识别、储、盖层特征及时空分布、盆地模拟分析、含油气系统描述等工作;勘探区块选择包括成藏区带评价、有利区块选择、谋求油气探矿权的建议等内容。

评价要求作到成藏区带评价;油气成藏模式预测;潜在量预测;区带勘探风险分析和工程经济概念设计和评价。

最终提交的主要成果包括文字报告的7项内容、27种附图、8类附表及相关专题研究附件。

三、目标评价

目标评价一般按资料准备、勘探目标优选、预探目标钻前评价、预探井随钻分析和预探目标钻后评价5个阶段循序进行(图5-34)。在勘探程度较高的地区,勘探目标优选和预探目标钻前评价可以同步进行;在已知油气成藏区带内则当以圈闭的落实和预探目标钻前评价为重点。

5个阶段主要内容如下。

a.资料准备:为目标评价提供必要的地质背景资料和基础资料。

b.勘探目标优选:优选可供预探的有利含油气圈闭。

c.预探目标钻前评价:提交有经济性开发效益前景的钻探目标及预探井位。

d.预探井随钻分析:发现油气藏及取得必要的地质资料。

e.预探目标钻后评价:对预探目标的石油地质特征进行再认识和总结勘探经验教训,并提交获油气流圈闭的预测储量及进一步评价的方案。

评价内容主要包括资料准备,具体为资料收集、地震资料集和处理、建立目标评价数据库;勘探目标优选包括查明和落实各类圈闭、圈闭的油气成藏条件分析、圈闭的潜在量计算、预探目标优选;预探目标钻前评价包括圈闭精细描述、圈闭的油气藏模式预测、圈闭的潜在量复算、圈闭的地质风险分析、圈闭的工程经济概念设计和评价、预探井位部署建议、预探井钻井地质设计;预探井随钻分析包括跟踪了解钻井动态、随钻地层分析和对比、随钻油气水分析、钻井设计调整和测试层位建议等;预探目标钻后评价包括预探井钻后基础资料整理和分析、圈闭石油地质再评价、油气藏早期评价等项内容。

其中,十分重要的是要求对预探目标做到:圈闭精细描述、圈闭的油气藏模式预测、圈闭潜在量计算、圈闭地质风险分析、圈闭的工程经济概念设计与评价、预探井位部署建议和预探井钻井地质设计。

要求预探目标钻后评价做到:圈闭的石油地质再评价、油气藏早期评价、预测储量计算、油气藏开发早期工程经济评价和油气藏评价方案建议。

最后要提交预探目标评价报告,内容有预探目标评价及评价井钻探方案文字报告8项内容、附图16种、附表5类。预探目标钻后评价内容包括文字报告5项内容、附图15种、附表14类。

图5-34 目标评价程序

四、油气藏评价

油气藏评价按资料准备、油气藏跟踪评价和探明储量计算3个阶段实施(图5-35)。油气藏评价应是滚动进行的,随着勘探程度的提高和资料的积累,从宏观的油气层分布范围和规模等框架描述到微观的油气储集空间分布和体积等的精细描述,不断提高精度。

图5-35 油气藏评价程序

3个阶段的主要内容如下。

a.资料准备:为油气藏评价提供必要的地质背景资料、基础资料和各种条件。

b.油气藏跟踪评价:探明获油气流圈闭的油气层分布范围、规模和产能。

c.探明储量计算:提交可供商业开的石油和天然气探明储量。

主要评价内容为资料准备包括资料收集、建立油气藏评价数据库;油气藏跟踪评价包括评价井钻井地质设计、评价井随钻分析、评价井完钻跟踪评价、评价方案调整建议、油气藏终止评价报告;探明储量计算包括油气藏结构、储层性质、储层参数、油气藏特征、油气藏静态模型描述、油气藏模式研究、探明储量计算及评价、开发方案概念设计、收率研究、工程经济评价、探明储量报告的编写等。

需要注意的是,工程经济评价要包括勘探和开发工程参数,勘探和开发投资额操作费估算,经济模式和财务参数的选取,内部盈利率、投资回收期、净观值和利润投资比等指标的计算,敏感性和风险分析等内容。

最后应提交油藏终止评价报告和探明储量报告。

油藏终止评价报告包括文字报告6项内容、附图17种、附表23类。

探明储量报告按国家矿产储量委员会的储量规范和储量报告图表格式要求完成。

五、地质风险分析方法

勘探风险分析是石油公司勘探投资决策的重要参数,如前所述,勘探工作地质评价各个阶段都要进行风险分析。当然投资决策并不完全取决于地质风险的高低,还取决于石油公司的资金实力和承受风险的能力,但地质风险毕竟是投资决策中不可稀缺的基本参数。

根据多年勘探实践,并参考外国油公司风险分析经验和方法,我们确立了以地质条件存在概率为核心的地质风险分析方法。

本方法适用于中国海油油气勘探中预测圈闭的钻前评价分析,也可以用于对盆地或凹陷进行量预测时的地质风险分析。

此法的目的在于通过对形成油气藏基本石油地质条件存在的可能性分析,预测或估计目标圈闭的地质成功概率,为勘探目标经济评价和勘探决策提供依据。

一般而言,风险(Risk)通常解释为失败的可能性。油气勘探过程中的风险主要包括地质风险、技术风险、商业风险和政治风险等。地质风险(Geological Risk)指勘探者对勘探目标基本石油地质条件认识不足而导致勘探失败的可能性。而地质成功概率(Probability of Geological Success)或称地质把握系数,是预计目标的圈闭经钻探获得商业性油气发现的概率。地质风险分析(Geological Risk Ana1ysis)则是用概率统计学原理和圈闭评价方法,研究并量化形成油气藏的基本石油地质条件存在的可能性,预测目标圈闭的地质成功概率。

(一)地质风险分析方法

预测地质成功概率的方法有地质条件概率法、历史经验统计法和类比法等多种方法。这里用地质条件概率法,当然,也可以根据具体情况使用多种方法进行比较和互相印正。

1.地质条件概率法的基本依据

a.油气藏的形成需要同时具备烃源、圈闭、储层、盖层和运聚匹配等基本石油地质条件,缺一不可;

b.各项地质条件必须满足彼此互相独立的设;

c.各项地质条件存在概率之积即为该目标圈闭的地质成功概率。

2.地质条件存在概率的取值原则

a.各项地质条件存在概率的求取有多种方法,本规范取由已知与未知的联系来判断未知的原则,并强调占有资料的类别和可靠程度对分析结果的影响。

b.正确分析各项石油地质条件存在概率和资料的可靠程度是测算目标圈闭的地质成功概率的关键。要求必须掌握本区的石油地质条件和资料状况在目标评价总和研究的基础上进行地质风险分析和取值。

c.由于不同地区地质条件千差万别,使用者也可以根据各盆地的实际情况对取标准作适当调整和修改,但应予以说明。

(二)地质风险分析程序

首先对基本石油地质条件进行分析,确定或估计其存在概率;然后计算单层或多层圈闭的地质成功概率。

1.基本石油地质条件分析

a.烃源条件:①根据同盆地、同凹陷或同构造带内油气田分布情况,已钻探圈闭或井的含油气情况,油气苗和其他油气显示情况(地球物理烃类检测、化探、摇感等),确定是否存在成熟的烃源条件;②烃源岩的体积;③烃源岩中有机质的数量和质量;④烃源岩中有机质的成熟度;⑤资料类型和证实成度(地震、录井、钻井、岩心或露头以及资料的密度和质量)。

b.储层条件:①同盆地、同凹陷或同构造带内已钻圈闭相同储层的储集能力及优劣成度;②储层的沉积相和储集体类型;③储层的岩性、厚度及分布的连续性;④储层的储集类型和物性条件;⑤储层段是否有同盆地、同凹陷或同构造带内的井可供标定、模拟和对比;⑥资料类型和证实成度(地震、录井、测井、岩心或露头以及资料的密度和质量)。

c.盖层条件:①同盆地、同凹陷或同构造带内已钻圈闭同类盖层的封闭能力及优劣程度;②盖层的沉积相、岩性、厚度及稳定性;③盖层的封闭类型和垂向封堵能力;④盖层中断层的数量、性质、规模及活动时期;⑤资料类型和证实程度(地震、录井、测井、岩心或露头以及资料的密度和质量)。

d.圈闭条件:①圈闭类型及规模;②同盆地、同凹陷或同构造带内同类型圈闭的含油气情况;③断块、岩性等圈闭的侧向封闭条件和性能;④地震测网的密度和资料的质量。

e.运移条件:①油气运移通道类型,如砂岩输导层、断层面、不整合面、底辟、高压释放带等;②供烃范围内圈闭与有效烃源岩连通的路径及通畅程度;③油气运移的方式、指向和距离。

f.保存条件:①圈闭形成后构造或断裂活动对圈闭封闭条件的影响;②区域水动力条件对油气聚集的影响;③是否遭受过水洗或生物降解破坏作用;④油气是否有过热或非烃气体(CO2、N2等)的潜入;⑤油气扩散作用对油气藏的影响。

g.运聚匹配条件:①同盆地、同凹陷或同构造带内同期的圈闭是否存在油气田或油气藏;②圈闭形成时间与油气主要生成时间、运移时间的关系。

2.地质条件存在概率的评估

使用地质条件存在概率评价标准,来评定目标圈闭各项地质条件的存在概率。

3.目标圈闭地质成功概率计算

a.单层圈闭地质成功概率的计算。

单层圈闭地质成功概率为该层各项地质条件存在概率之积,即:

中国海洋石油高新技术与实践

式中:Ps为单层圈闭的地质成功概率;Pt为烃源条件的存在概率;Pc为储层条件的存在概率;Pg为盖层条件的存在概率;Pq为圈闭条件的存在概率;Py为运、聚匹配条件的存在概率。

b.多层圈闭地质成功概率的计算。

如果各层圈闭对应的各项地质条件均相互独立,则:

该目标圈闭(构造)至少有一层圈闭获得地质成功,其概率为Pas:

中国海洋石油高新技术与实践

式中:Ps1为第一层圈闭的地质成功概率;Ps2为第二层圈闭的地质成功概率;Psn为第n层圈闭的地质成功概率,为了强调主要的钻探目的层,n值一般不大于3。

该目标圈闭各层圈闭均获得地质成功,其概率为Pts:

中国海洋石油高新技术与实践

最后,为了更好地把握主要地质风险因素,提高风险预测水平,并不断完善地质风险分析方法,要求进行钻后相关数据的整理,并按要求填写地质条件的钻探结果和钻后分析,对照钻前预测验证其符合程度,分析钻探成功或失利的原因。

六、集束勘探方法

中国海油入市以来,其经营管理方式迅速与国际接轨。反应在勘探上,也实现并正在实现着一种理念的转变,即由经济遗留的“储量指标”勘探理念——“我为祖国献石油”,向市场经济“经营型”勘探理念——“股东要我现金流”转变。入市后,股市对油公司业绩的衡量标准是现金流,它体现在勘探上不仅是新增储量的多少,而是一系列的经营指标——储量替代率、桶油勘探成本和资本化率。

储量替代率:是指新增探明可储量与当年产量之比。

桶油勘探成本:是指每探明一桶可原油储量所需的勘探费用,包括管理费用、研究费用、物探费用和无经济性发现的钻井费用。这些费用需进入当年勘探成本,叫做成本化。

资本化率:指有经济性发现的钻井费用与总勘探费用之比,这部分费用不进入当年勘探成本,可在油田开发中回收,故称资本化。

储量替代率反映了储量资产的增减。桶油发现成本是衡量勘探经营总体水平的指标,在保持稳定的勘探投人,保证100%储量替代率的前提下,要降低桶油发现成本,就要降低经营管理费用和每公里物探作业费用与每米进尺的钻井费用。当然大的储量发现会导致桶油勘探成本大幅度下降,但除特殊需要,油公司更希望保持股市稳定,无需披露重大储量发现。资本化率反映了油公司所占有的勘探区块(也是一种资产)的质量,它不仅可以降低桶油成本,更重要的是表现所占有的勘探区是否具备一定潜力、储量代替率是否有保障。

要想有多的储量发现就要打更多的井,在保证桶油发现成本承诺的前提下,只有降低单位作业成本。面对发展需要的压力、投资者的压力、服务价格走向市场后的压力,必须走出一条勘探管理新路子,于是集束勘探思路孕育而生。

集束勘探是探索适应市场经济条件下多快好省的勘探新理念,主要包括以下3层含义。

a.集束部署:着眼于一个领域或区带,选择具有代表性的局部构造集中部署,用较少的工作量以求解剖这一领域或区带,达到某一确定的地质目的。

b.集束预探:基于不漏掉任何一个有经济性油气藏为出发点,简化初探井钻井过程中取资料作业和测试,加强完钻过程中的测井工作,以显著提高初探井效率,大幅度降低初探井费用,用简化预探井、加速目标的勘探方法。

c.集束评价:一旦有所发现,则根据地下情况,优选最有意义的发现,迅速形成一个完整评价方案,一次组织实施,缩短评价周期和整个勘探周期。如有商业性,使开发项目得以尽快实施。

集束评价钻探包括两类不同取资料要求的钻井,一类是取全取准资料的井,此类井要充分考虑开发、工程、油藏甚至销售部门的需要,取足取好资料;另一类井是为了解决复杂油气田面上的控制问题,需要简化其中一些环节,作为集束井评价,以求得到以最低的评价费用取全取准资料,保证储量计算和编制ODP方案的需要。

在实施集束勘探一年的时间中,我们针对一个有利区带和目标共钻探集束探井20多口,初步见到以下效果:①储量代替率可望达到151%;②资本化率39%;③桶油发现成本保持在1美元;④完成了历年来最高的和自营勘探投资——16.75亿元;⑤建井周期缩短2/3;⑥每米钻井进尺费用降低40%。

通过一年的实践,主要体会如下。

1.以经济性发现为目的,统筹资料的获取

初探井是以经济性发现为目的的,关键在于证实有一定烃类产能、有一定厚度油气层的存在,精确的测试资料、储层物性资料、原油物性资料都可留在评价井钻探中获取。这就可以在初探井中作到不取心、不测试,从而大大简化钻井程序,达到降低钻井成本的目的。

一般来说初探井的经济成功率只有10%之间,我们可以在90%左右的初探井中实现低成本探井。事实证明用电缆式测试(MDO)、加旋转井壁式取心技术,完全可以保证不漏掉有经济测试价值的油气层。集束评价更有利于有目的地取好油藏评价的资料,在进行了早期油藏评价后,我们对油气藏模式有了基本的认识,就可以有目的地安排油藏评价井资料获取方案,大大减少了盲目性。

2.集束勘探在资料问题上体现了性、目的性

集束勘探“三加三简”的有所为和有所不为的获取资料原则——抓住有无油气,有油气则加强,无油气则从简;突出经济性,有经济性则加强,无经济性则从简;区分主力层与非主力层,主力层则加强,次要层则简化。这样保证了总体资料的质量,减少不必要的繁琐取资料工作量。

3.实现集束勘探要做好技术准备

首先应加强完井电测、简化钻井测试,测井要做好电缆测试(泵抽式取样)、旋转式井壁取心和核磁共振测试的技术准备。

其次,钻井工程借鉴开发生产井优快钻井经验,对初探井简化井身结构,打小井眼,不取心,尽可能保证钻井作业的连续性,提纯钻进时间比例,用集束勘探的办法尽量减少动员费用,在拖航、弃井等环节上提高时效,降低费用,保证稳定的、高质量的泥浆性能,打好优质的规则井眼,创造良好的测井环境。

第三,评价井的测试工作中,要做好直读压力计、多层连作、油管完井等技术准备。

4.集束勘探协调了长期困扰勘探家的三大矛盾

第一,协调了加大勘探工作量与有效控制成本间的矛盾。集束勘探可实现相同的勘探成本下,多打初(预)探井,总体上必然加快勘探进程。如在合同区义务勘探工作量确定的前提下,勘探成本的降低,则意味着抗风险能力的增强。

第二,协调了不同专业间的利益矛盾。长期以来地质家想多取资料——资料越多越好;钻井工程想快——钻完井越快越好;测井公司想省——下井次数越少越好。集束勘探实现了集约性的成本控制,使各专业各得其所。

第三,协调了老石油传统与现实市场经济间理念上的矛盾。在老石油地质家的传统观念中,是取资料越多越好、储量发现越多越好、收率提得越高越好。把这些观念放在市场经济条件下,都会与勘探成本产生冲突,于是这些观念都变成了相对的、有条件的:资料——在保证不同勘探阶段起码质量要求下,取资料的工作量越少越好;储量发现——在保证勘探资本及时回收条件下越多越好,否则无须及时探明;收率——在保证现金流和盈利率条件下越高越好,否则宁可要相对较低的收率;勘探成功率——对油公司来讲,地质成功率毫无意义,油公司只要商业成功率,更关心的是勘探投入的资本化率;储量概念——不能只讲地质储量,对油公司来说更关心可储量,尤其是可作为公司资产的份额可储量。

集束勘探是我们由经济成功转向市场经济时,在经营理念上发生根本变革的表现。一年来的成功实践,不但在中国海油勘探家中产生了巨大观念上的震动,也影响到许多外国作业者,纷纷吸收或效仿集束勘探方法。集束勘探方法的产生,表明我国企业不仅可以进入国际市场,并且完全可以在市场运作中有所发现,有所发明,有所前进,创造出更好的经济效益。

在2002年中国海洋石油勘探年会上,将集束勘探发展为价值勘探的一部分,这是勘探工作进步的表现。这一新生事物的出现,使公司上市后出现了新情况:结束了国有独资的历史,十分关注投资的收益、储量增长的压力、成本的压力等。如此,必须对过去传统的勘探理念进行重新审视:由过去的地质调查研究型,变为经营油气实物的经营型,要创造经营价值。所以,价值勘探是一种以价值为取向的勘探理念,具体地说,每项工作以是否增加公司或股东的价值,作为决策的依据,即勘探的每个环节,以创造出更多的价值作为决策的出发点,勘探工作将围绕价值中心来进行。这也体现了勘探工作本身是发展的、动态的,在勘探工作不断进展中,随时拓宽、发展勘探方法,以促进海洋石油事业不停顿地、持续发展。