天然气动态压力标准最新版本是什么_天然气动态压力正常值
1.盖层封闭能力评价参数是什么?
2.燃气的基本特性
3.汽车空调静态压力标准
1、安装位置:入户总阀门,因为这样有利于天然气工作人员天然气用量的抄报。
2、安装要求:满足抄表、检修、保养和安全使用的要求,即相关标准符合行业和国家的规定
3、安装高度:与燃气灶的水平净距不小于300mm,因为这样有利于燃气的流通。
4、 安装条件:通风良好的房间,防止因为天然气的泄露带来的人身安全威胁。
5、 安装禁区:浴室、卧室、危险品和易燃物品处,因为火花极有可能引发天然气的爆炸,带来人身财产安全威胁。
扩展资料
天然气表的维修及保养
1、产品在使用时不得使用强性烧咸、汽油、酒精等溶剂清洗,可使用中性清洗剂洗。
2、产品发生故障,要及时向管理部门报告,应由专业人员进行检修,用户不得自行拆卸处理。
3、自出厂日期起,十八个月内如发现有质量问题,使用者又遵守说明书中的有关规定,而且铅封未动,我公司将及时负责修理或退换。
参考资料
百度百科-IC卡家用膜式燃气表编辑
盖层封闭能力评价参数是什么?
在油田开发过程中,根据实际生产资料统计出的一系列说明油田开发情况的数据称为开发指标。可以利用开发指标的大小和变化情况对油田开发效果进行分析和评价。
一、产量方面的指标产量方面的指标主要有以下几项:
(1)日产能力。油田内所有油井(除了计划暂闭井和报废井)每天应该生产的油量总和叫油田的日生产能力,单位为t/d。
(2)日产水平。油田的实际日产量叫日产水平,单位为t/d。
日产能力代表应该出多少油。但由于各种因素实际上并没有产出预算的油。日产能力和日产水平的差别越小,说明油田开发工作做得越好。
(3)折算年产量。折算年产量是一个预计性的指标,即根据今年的情况预计明年的产量,根据折算年产量制定下一年的生产计划。对于老油田,还要考虑年递减率。
(4)生产规模。所有油田生产能力的总和乘以采油时率(某一时段内的有效生产时间)就是生产规模。
(5)平均单井产量。油田实际产量除以实际生产井的井数得到平均单井产量。
(6)综合气油比。综合气油比是实际总产气量与实际总产油量之比,单位为m3/t,表示油田天然能量的消耗情况。
(7)累积气油比。累积气油比是累积产气量与累积产油量之比,表示油田投入开发以来天然能量总的消耗情况。
(8)采油速度。采油速度是指年采出油量与地质储量之比,它是衡量油田开采快慢的指标。采油速度可分为油田采油速度、切割区采油速度、排间采油速度和油井采油速度,通常用百分数表示。只要把目前日采油量或月采油量折算成年采油量,就可以算出采油速度。正常生产时间要除去测压、维修等关井时间。
(9)采出程度。采出程度是指油田某时刻累积采油量与地质储量之比,反映油田储量的采出情况,用百分数表示。
(10)采收率。油田采出来的油量与地质储量的比值称为采收率。油井未见水阶段的采收率叫无水采收率。无水采收率等于油井见水之前的累积采油量与地质储量之比。油田开发结束时达到的采收率叫最终采收率。最终采收率等于开发终结时的累积采油量与地质储量之比。最终采收率是衡量油田开发效率的指标,受许多因素影响。只要充分发挥人的主观能动性,采用合理的开采方式和先进的工艺技术,就能提高采收率。
(11)采油指数。采油指数是指单位生产压差下的日产油量,单位是t/(d·MPa)。采油指数的变化表明油田驱动方式的改变。
二、有关水的指标有关水的指标有以下几项:
(1)产水量。产水量表示油田出水的多少。日产水量表示每天出多少水。累积产水量是指油田从投入开发以来一共出了多少水。
(2)综合含水率。综合含水率是指产水量占油水混合总产量的百分比,表示油田出水或水淹的程度。
(3)注入量。一天向油层注入的水量叫日注入量,一个月向油层注入的水量叫月注入量。从注水开始到目前注入的总水量叫累积注入量。
(4)注入速度。注入速度等于年注入量与油层总孔隙体积之比。
(5)注入程度。累积注入量与油层总孔隙体积之比。
(6)注采比。注入量与采出量之比叫注采比。采出量是指采出油、气、水的地下体积。
(7)水驱油效率。水淹油层体积内采出的油量与原始含油量之比叫水驱油效率。
(8)吸水指数。单位注水压差下的日注水量叫油层的吸水指数。反映油层的吸水能力。
(9)注水强度。注水井单位有效厚度油层的日注入量叫注水强度,单位为m3/(d·m)。注水强度是否合适直接影响油层压力的稳定。利用注水强度可调节含水上升速度。
(10)水油比。水油比是指产水量与产油量之比,单位为m3/t,表示每采出一吨油要采出多少水。
(11)含水上升率。油田见水后,每采出1%的地质储量含水率上升的百分数称为含水上升率。反映不同时期油田含水上升的快慢。是衡量油田注水效果的重要指标。
(12)注水利用率。注水利用率表示注入水中有多少留在地下起驱油作用,用以衡量注水效果。
三、压力和压差方面的指标压力与压差方面的指标有以下几项:
(1)原始地层压力。开发前从探井中测得的油层中部压力称为原始地层压力,用以衡量油田的驱动能量和油井的自喷能力。原始地层压力一般随油层埋藏深度的增加而增加。油层投入开发以后,由于地层压力发生变化,原始地层压力无法直接测量,可以根据油层中部深度计算。
(2)目前地层压力。油田投入开发以后,某一时期测得的油层中部压力,称为该时期的目前地层压力。
(3)静止压力。油井关井后,压力恢复到稳定状态时所测得的油层中部的压力称为静止压力,也叫油层压力,简称静压。在油田开发过程中,静压是衡量地层能量的标志。静压的变化与注入和采出的油、气、水的体积有关。如果采出体积大于注入体积,油层产生亏空,静压就会比原始地层压力低。为了及时掌握地下动态,油井需要定期测静压。
(4)折算压力。大多数油田由许多油层组成,有的埋藏深、压力高,有的浅、压力低。由于每口井油层中部的海拔不一样,计算出的同一油层的原始地层压力有高有低。仅仅根据实测压力不能进行井与井的对比、研究油田动态变化。为了便于井之间的压力对比,把所有井的实测压力折算到同一海拔高度,这种折算后的压力叫做折算压力。
(5)流动压力。油井正常生产时所测得的油层中部的压力称为流动压力,简称流压。流入井底的油是依靠流动压力举升到地面的。流压的高低直接反映油井的自喷能力。
(6)饱和压力。在油层高压条件下,天然气溶解在原油中。原油从油层流至井口的过程中压力不断降低。当压力降到一定程度时,天然气就从原油中分离出来,对应的压力就叫饱和压力。对于油田开发来说,油田的饱和压力低,就可以使用较大的油嘴放大生产压差开采,地层内不易脱气,因此大大提高了油井产量和油田的采油速度。但不利的是,饱和压力低的井自喷能力较弱。
(7)油管压力。油气从井底流到井口后的剩余压力称为油管压力,简称油压。油压可以借助于井口的油压表测出。油压的大小取决于流压的高低,而流压又与静止压力的大小有关,因此可以根据油压的变化来分析地下动态。
(8)套管压力。流动压力把油气从井底,经过油管与套管之间的环形空间举升到井口后的剩余压力称为套管压力,又叫压缩气体压力,简称套压。在油井脱气不严重的情况下,套压的高低也表示油井能量的大小。油压和套压可以比较直观地反映出油井的生产状况。在油井的日常管理中,要及时、准确地观察和记录油压、套压,并分析其变化原因。
(9)回压。下游压力对流动的上游压力来说都可以看成是回压。回压是流体在管道中的流动阻力造成的。矿场上所说的回压通常是指干线回压,是出油干线的压力对井口油管压力的一种反压力。回压还与管径、管子的长度、流体粘度、温度等因素有关。
(10)总压差。原始地层压力与目前地层压力的差值叫总压差。对于依靠天然能量开发的油田来说,总压差代表能量的消耗,所以目前地层压力总是低于原始地层压力的。对注水开发的油田来说,是在注水保持地层压力的情况下进行开发的,目前地层压力往往保持在原始地层压力附近。当注入量大于采出量时,目前地层压力超过原始地层压力。当注入量小于采出量时,地层产生亏空,使目前地层压力低于原始地层压力。
(11)采油压差。油井关井时,油层压力处于平衡状态。当油井开井生产后,井底压力突然下降,由于油层内的压力仍然很高,就形成压力差,该压力差叫做采油压差,又称为生产压差或工作压差。在相同的地质条件下,采油压差越大,油井的产量越高。但在地层压力一定的情况下,当采油压差大到一定程度,即流动压力低于饱和压力时,井底甚至油层中就会脱气、出砂、气油比上升,油井产量不再增加或增加很少。这对合理采油、保持油井长期稳产、高产很不利。因此,必须根据采油速度和生产能力制定合理的采油压差,不能任意放大。
(12)注水压差。注水井井底流动压力与注水井目前的地层压力之差称为注水压差。
(13)流饱压差。流动压力与饱和压力的差值叫流饱压差。流饱压差是衡量油井生产是否合理的重要条件。当流动压力高于饱和压力时,原油中的溶解气不会在井底分离出来,生产气油比就低。如果流动压力低于饱和压力,溶解气就会在油层里分离出来,生产气油比就高,致使原油粘度增高、流动阻力增大,影响产量。因此,要根据油田的具体情况,规定在一定的流饱压差界限内采油。
(14)地饱压差。目前地层压力与饱和压力的差值称为地饱压差。地饱压差是衡量油层生产是否合理的重要标准。如果油田在地层压力低于饱和压力的条件下生产,油层里的原油就要脱气,原油粘度就会增高,严重时油层就会结蜡,从而降低采收率。所以在这种条件下采油是不合理的。一旦出现这种情况,必须采取措施调整注采比,以恢复地层压力。
(15)流压梯度。流压梯度是指油井正常生产时每米液柱所产生的压力。选不同两点测得的压差与距离之比即为流压梯度。用它可以推算出油层中部的流压。根据流压梯度的变化,还可以判断油井是否见水,见水油井的流压梯度会增大。
(16)静压梯度。静压梯度是指油井关井后,井底压力恢复到稳定时,每米液柱所产生的压力。静压梯度可以用来计算静压。
燃气的基本特性
油气进入圈闭后,由于烃柱浮力、水动力及储层超压(合称储层剩余压力)的作用促使流体继续运移甚至散失而使油气藏遭到破坏。盖层的主要作用就是阻滞油气逸散,保护油气聚集,是形成油气藏的必要条件之一。当盖层排替压力大于储层流体的剩
表3—1 油气盖层分布一览表
续表
图3—1 盖层封闭条件示意图
余压力时,就可以有效地阻止油气的纵向散失,称为静态封闭(图3—1);反之,油气就可能通过盖层逸散,此时盖层以其微细孔喉和较低的渗透性,依其粘滞阻力发挥阻滞油气运移的作用,称为动态封闭。天然气分子量小,粘度低,流动性大,即使没有压差存在,在浓度梯度作用下还会进行扩散运移,如果盖层自身即是烃源层,具有较高的烃浓度,或具有较强的吸附能力,降低了储盖层间的浓度梯度,则可减缓甚至抑止油气的扩散散失,称为浓度封闭。
在地质历史过程中,油气的聚集与散失在很大程度上取决于盖层的封盖性能,微观封盖能力主要通过物性、岩矿、地化、岩石力学和突破压力及扩散系数等专项参数(表3—2)来评价,前面几项参数已被述及,且在盖层评价中亦十分重要,只是研究对象及应用角度不同。本节主要针对盖层分析评价的专项分析参数即突破压力、有效扩散系数、比表面、微孔分布、粒度分析等参数的测定及其地质应用进行介绍。
表3—2 盖层评价分析项目一览表
1.突破压力测定及地质应用突破压力是指非润湿相流体排驱润湿相流体的最小压力,采用岩心驱替法测定。排替压力是指岩石中最大连通孔径所对应的最小毛细管压力,是样品的固有参数,一般采用压汞法测定。
盖层的排替压力是静态封闭压力,当储层剩余压力小于盖层的排替压力时,油气则完全被阻滞,不能通过盖层散失。岩心驱替法测定的突破压力是排替压力与粘滞阻力之和,为动态封闭压力,其中粘滞阻力Pμ是流体在运动过程中毛细管壁产生的粘滞力,其大小与最大毛细管半径Ro、运移路径长度L、流体粘度μ和时间t有关:
对于特定岩心和流体系统,突破时间越长则粘滞力越小,突破压力越接近于排替压力,当t→+ω时,Pμ→0,突破压力即等于排替压力。用岩心驱替法测定盖层样品的突破压力时,通过控制突破时间即可求得排替压力。
采用压汞法确定盖层样品的排替压力目前仍存在较大分歧(杨家琦等,1995),张义纲(1991)、邓宗淮(1990)和肖无然(1990)等立足于Berg(1975)、Xahuh(1973)、Downey Schmwalter(1980)等对烃类饱和度大于10%左右时才能发生二次运移的观点,提出过汞饱和度为10%所对应的毛细管压力Pc即为盖层的排替压力。实际上在压汞试验中,汞总是优先进入最大量级的孔隙喉道,汞的排替压力Pdc应以进汞曲线开始出现稳定阶段时对应的毛细管压力来确定。经驱替实验证实,应用稳定进汞曲线确定排替压力更接近实际,由此采用Pdc做为压汞法排替压力。
在盖层中往往初始饱和的是水,封盖的是油或气,因此在油气藏盖层评价时需要将压汞法测定的排替压力换算为烃水的排替压力。对于微孔隙发育的盖岩,还可用氧吸附法测定的孔分布求排替压力(肖元然,1990)。
1)突破压力的影响因素(1)沉积环境的影响。
沉积环境控制了沉积物的物质组成及其结构,由此引起盖层封闭能力的差异。在水体面积较大、稳定的沉积环境中形成的泥质岩盖层质纯,颗粒细小,砂质含量低,微孔发育,突破压力高,如深海相、深湖相沉积的泥页岩具有较高的封盖能力;在近物源、水体较动荡的沉积环境中形成的泥质岩质不纯,微细孔隙含量偏高,突破压力低,如河流环境形成的泥岩封盖性能差。吐哈盆地侏罗系地层泥质岩盖层突破压力随含砂量的增加,突破压力降低(图3—2)。
图3—2 不同含砂量泥岩突破压力图
碳酸盐岩盖层受沉积环境的影响主要与泥质含量有关,纯灰岩性脆,易产生裂隙而降低封盖能力,而泥灰岩则塑性条件相对较好不易产生裂隙,如在鄂尔多斯盆地深水斜坡、斜坡及泻湖相形成的碳酸盐岩盖层。
(2)成岩阶段的影响。
在不同的成岩阶段,泥质岩盖层的封盖能力也发生明显的变化。泥质岩中矿物成分转化十分明显,早成岩阶段蒙脱石含量高,具有较强的膨胀性,但压实程度较低,封盖性一般;晚成岩A期蒙脱石大量转化为伊/蒙混层,受压实作用强,具有基质状、紊流状或层流状微结构,孔隙水平定向、孔隙度低,渗透性差、封盖性能好;晚成岩期粘土矿物以伊利石和高岭石为主,坚硬、性脆,其封盖性能取决于构造运动的强弱及裂隙发育程度(表3—3)。
膏岩成岩阶段主要分为四期,早成岩期石膏脱水变为硬石膏,自形膏岩矿物呈压实定向排列;晚成岩A期硬石膏重结晶,由自形晶变为柱状、板状、板片状半自形晶;晚成岩B期在侧向挤压作用下,硬石膏重新变形,重结晶形成糖粒状它形巨晶结构;退后生成岩期使膏岩暴露地表,由于表生风化淋滤作用,退化为变水石膏及石膏。
表3—3 泥质岩盖层与成岩阶段关系表(据赵庆波)
硬石膏具有微孔隙发育,渗透率低,排替压力高的特点,在地层条件下易发生塑性变形,不易形成裂隙,具有极强的封闭能力。某盆地侏罗系硬石膏在围压50MPa,温度为70℃时突破压力达25~32MPa,而变水石膏突破压力为5~10MPa,石膏突破压力在5MPa以下。
(3)温度及压力条件的影响。
突破压力随温度及压力条件变化也十分显著,主要表现为由于地层埋深增加,孔隙被压缩,特别是塑性大的膏岩变化尤其明显(表3—4),随着温度及压力的提高,突破压力增大52%~525%,泥岩和灰岩变化相对较小。
2)突破压力在地质评价中的应用突破压力由于受沉积环境、成岩作用、地层温压条件及构造应力作用等多种因素的影响,虽具有一定规律,但也不尽然。同一地区同一沉积环境,不同埋深、不同物质组成,其突破压力也可能差异较大。因此在进行盖层评价时应根据研究区内各种地质条件的影响程度,结合储层及其它实测资料进行评价。
表3—4 不同模拟条件下突破压力变化表
排替压力主要是阻滞油气的渗流运移,是毛细封闭的重要评价参数。排替压力越高,突破压力越大或突破时间越长,则表明盖层的最大连通孔径越小,毛细阻力越大,封盖能力越强。除了上述直接测定参数外,还可用相对封闭压力、封盖系数及封盖气柱高度等参数将储层和盖层纳入同一系统中进行分析评价,这样结果将更加可靠。
(1)相对封闭压力:
盖层封闭压力与储层剩余压力的差值,即:Pr1=Pd-ΔPres;或采用盖层封闭压力与储层剩余压力的比值,即:Pr2=Pd/ΔPres。
(2)封盖系数:
除了用压力评价外,还可以用时间做评价参数,根据普赛尔公式,突破时间由3—2式确定。假设取样的样品与地质条件下盖层岩石孔隙结构一致,由此可以根据实测突破时间计算穿越盖层的突破时间:
式中tw——盖层的突破时间,s;H——盖层厚度,cm。
如果气藏的形成时间为t,则定义封盖系数为:tW与t的比值。
(3)封闭烃柱高度:
在不考虑地层超压及水动力条件下,盖层封闭油气的条件是Pdc≥PF,由此可得封闭的最大烃柱高度为:
式中THC——封闭最大烃柱高度,m;ρW、ρHC——水和烃的密度,g/cm3;g——重力加速度,9.8m2/s。
2.有效扩散系数测定及地质应用扩散是指在浓度梯度作用下,气体分子由高浓度区通过各种介质向低浓度区自由迁移达到浓度平衡的一种物理过程。扩散快慢以扩散系数来表述,岩石的有效扩散系数是指沿扩散方向,在单位时间通过单位面积岩石的扩散流的流量与浓度梯度的比率。油气藏中,储层与盖层之间存在的浓度梯度会促使天然气通过盖层进行扩散运移,成为油气散失的另一方式。
扩散系数的大小反映了扩散运移速率的快慢,如常规孔渗资料一样,可用其评价盖层的质量好坏。扩散系数越小,则通过盖层的散失速度越慢,封盖性能越好。同理还可用其它间接参数来进行盖层评价,主要参数有扩散速率因子、扩散阻滞时间和扩散阻滞系数(杨家琦等,1995)等参数。当然,最有效、最直观的盖层评价指标是扩散散失量及浓度封闭因子。
1)扩散速率因子扩散运移不仅受岩石扩散系数影响,还受盖层厚度和时间的影响。扩散速率因子定义为单位浓度差下的扩散通量密度,即扩散系数与盖层厚度的比值:
2)扩散阻滞时间及阻滞系数扩散速率为VD,则气体穿越厚度为L的盖层所用的时间为tD,tD越小,表明气体越不易穿越盖层进行扩散运移,由此,定义时间tD为扩散阻滞时间:
如果tD大于气藏形成时间,则说明气藏形成后扩散前缘至今还未穿越盖层,气藏基本未遭受破坏,这反映了盖层对扩散运移的抑制能力,反之则说明存在扩散散失,二者之比称为扩散阻滞系数:
ED越大,盖层对扩散的阻滞能力越强,油气保存越好。
3.比表面和微孔分布的测定及地质应用做为盖层的岩类,如盐岩、石膏、泥质岩等,微孔特别发育,特别是小于100nm的孔隙占的比例很大,因此具有极大的比表面,同时其连通性差,迂曲度大,从而导致渗透率低、突破压力高、封闭能力好。然而用常规方法难以测定如此微小的孔隙含量,采用液氮吸附法则可很好地描述微细孔隙分布规律,评价盖层的封盖能力。
吸附法可给出较多有意义的参数用于盖层封盖能力评价,主要参数包括:
(1)吸附等温线:由于岩石的孔隙形态不同,其吸/脱附时中毛细凝聚过程也不一样,表现在吸附等温线中即吸附和脱附回线的形态各异,将吸附等温线归纳为五种类型,分别对应不同的孔隙结构形态(图3—3)。
图3—3 各种类型吸附回线及其所反映的各种孔隙结构A类:两分支的分离位于中等压力处,分支很陡,反映的定向端开放的管状毛细孔;B类:分支在饱和蒸汽压处很陡,脱附分支在中等相对压力处也很陡,反映的是具平行狭板状毛细孔;C类:分支开在中等压力处,反映的是一种典型的锥形或双锥形孔;D类:反映四面开放的尖劈形毛细孔;E类:吸附分支缓慢上升,而脱附分支在中等压力处很陡,表明具有墨水瓶形的孔隙。
开放性孔隙和细颈瓶形孔隙产生吸附回线而封闭笥孔隙将不产生吸附回线。
(2)根据吸附等温线获得的样品孔隙分布,依据不同孔径范围的孔隙所占的比例可判别孔隙发育程度,同时还可计算出平均孔径、中值半径、优势孔径范围等参数用于对比评价。平均孔径越小,优势孔径越低,则表明微孔越发育,其封盖性能就越好。
(3)比表面是单位质量岩石孔隙的总表面积,其值越大,表明微孔所占比例越高,对烃气的吸附能力也越强,越易对油气形成封闭。
4.泥质岩粒度的测定及应用由于受沉积环境的影响,泥质岩的颗粒均较细,但在不同的沉积相带中,其颗粒组成又有较大的差异。不同的组成,造成其形成的岩石孔隙结构不同,其力学性质也有所差异,从而影响到盖层的封盖能力。泥质岩中最大颗粒一般100~300nm,激光法测定粒径范围为0.1~500μm或更宽,采用激光法测试其粒度构成是行之有效的方法。
粒度分析主要给出粒度频率分布曲线和累积曲线,以及粒度中值、平均孔径或含砂量等参数,主要反映沉积时水动力条件,是沉积环境的具体体现。
在不同沉积环境下泥质岩粒度分布不同,深海相泥岩颗粒较细,粒度中值一般为8~10μm,而河流相泥质岩颗粒相对较粗,均质程度差,粒度中值在12~18μm以上(图3—4)。
在不同的沉积环境条件下,粒度分布不同,其成岩后孔隙结构、孔隙连通性等都有所差异,粒度分析利于更好地评价和预测泥质岩盖层的封盖性能。
总之,盖层的主要作用是阻滞油气的散失,其封闭方式主要包括毛细封闭(静态和动态封闭)和浓度封闭。评价其封闭能力的实验参数有:有孔隙度、渗透率及毛管压力等物性参数,X—衍射、薄片分析等岩矿参数,有机碳及R。等地化参数和杨氏模量及泊松比等力学参数。这些参数用于评价盖层的基本属性,判识其是否能够做为盖层,同时还有一些专项分析参数,如突破压力、有效扩散系数、封闭烃柱高度、封盖系数、扩散阻滞系数等用于定量评价盖层的封盖能力。将储盖层进行系统评价时可用相对封闭压力系数,浓度封闭因子等参数进行综合评价。在进行封盖层评价时,可以从中选择主要参数进行综合分析,既要分析盖层本身的封闭性能,又要考虑储盖层的配置关系,并需结合区域地质特点才能对封盖层进行合理、准确的评价。
图3—4 不同沉积环境泥岩盖层粒度及孔径分布特征图
汽车空调静态压力标准
1、密度:指单位容积所含有的重量。液化石油气的气态密度为2.0—2.5kg/Nm 3
2、比重:燃气的比重指单位容积的燃气所具有的密度,同相同状态下空气密度的比值,也叫相对密度或相对比重。
3、热值:单位容积燃气完全燃烧所放出的热量,成为该燃气的热值。
热值分为高热值和低热值。
高热值是指单位燃气完全燃烧后,其烟气被冷却到初始温度,其中的水蒸气以凝结水的状态排出时,所放出的全部热量。
低热值是指单位燃气完全燃烧后,其烟气被冷却到初始温度,其中的水蒸气以蒸气的状态排出时,所放出的全部热量。
4、理论空气量:指单位燃气按燃烧反应方程式完全燃烧所需要的最小空气量。
液化石油气燃烧所需空气量是天然气的3倍;是人工燃气的6倍。
5、膨胀与压缩
液态液化石油气的体积因温度升高而膨胀。在装满液化石油气的密闭容器中,随温度的升高,其体积迅速膨胀使压力很快升高到将容器爆破。如将水的体积膨胀系数设为1,液态液化石油气的体积膨胀系数大约是水的16倍。
6、饱和蒸气压
液态烃的饱和蒸气压,简称蒸气压,就是在一定温度下密闭容器中的液体及其蒸气压处于动态平衡时蒸气所表示的绝对压力。
饱和蒸气压与容器的大小及液量多少无关,与液化石油气的组份及温度有关。温度升高时,饱和蒸气压增大;轻组份比重组份的饱和蒸气压大。
7、气化潜热
气化潜热就是单位质量(1KG)的液体变成与其处于平衡状态的蒸气所吸收的热量。
物质从气态转变为液态,叫液化;气态转变为液态时,要放出热量。物质从液态转变为气态,叫气化。液态转变为气态时,要吸收热量。
液化石油气以液态储存,各种燃具使用的都是气态液化石油气。所以液化石油气经过从液态转变为气态的过程,称气化或蒸发,要吸热。当外界温度低不能供给气化或蒸发所需的热量时,液化石油气吸收自身的热量,使温度降低直至停止气化。
8、压力的分类
单位面积上的压力称作压力强度,简称压强。工程上把压强简称为压力。压力又分相对、绝对压力、负压力。
相对压力:用计量仪表测量出的那一部分压力,也叫表压力、正压力、工作压力。
绝对压力:大气压力与表压力之和,叫绝对压力,又叫实际压力。
负压力:用计量仪表测量出低于大气压力的那一部分压力,此时的相对压力因小于大气压力,因表示的数值为正,叫负压力。也叫真空度。
9、着火温度
燃料能连续燃烧的最低温度,称为着火温度。在常压(大气压)下,液化石油气的着火温度为365—460℃,天然气的着火温度为270—540℃,城市煤气着火温度为270—605℃。其着火温度比其它燃料要低的多,所以又叫易燃气体。
10、爆炸极限
可燃气体和空气的混合物遇明火而引起爆炸时的可燃气体浓度范围称为爆炸极限。在这种混合物中当可燃气体的含量减少到不能形成爆炸混合物时的那一含量,称为可燃气体的爆炸下限;而当可燃气体的含量一直增加到不能形成爆炸混合物时的那一含量,称为爆炸上限(见后页表)
11、燃烧的热值
气体燃料中的可燃成分(氢、一氧化碳、碳氢化物、硫化氢)在一定条件下与氧发生激烈的氧化作用,并产生大量的热和光的物理化学反应过程叫做燃烧。
燃烧的三个条件:可燃物、助燃物(氧)、着火源缺一不可。
一标准立方米燃气完全燃烧所放出的热量,称为该燃气的热值。单位为KJ/m 3。
热值分为高热值和低热值。
一般焦炉煤气的低热值大约为16000—17000KJ/m3,天然气的是36000—46000 KJ/m 3,液化石油气的是88000—120000KJ/m 3。
按1KCAL=4.1868KJ 计算:
焦炉煤气的低热值约为3800—4060KCAL/m3;天然气的是8600—11000KCAL/m3;液化石油气的是21000—286000KCAL/m3。
在夏季的话,静态时管路系统会达到平衡的压力在1Mpa,动态的话高压为1.2到1.6mpa,低压在0.4到0.5mpa压力。冬天的话静态为0.6,动态的话低压为0.2左右,高压为1.2mpa左右,这只是一个大概的数值。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。