1.石油天然气关键参数研究与获取

2.西安石油大学石油与天然气工程学科研究生培养方案

3.“石油与天然气工程”下属的二级学科就业都如何?(硕士)

4.LBM方法应用于天然气水合物沉积物中水合物分解过程的多相渗流规律研究

天然气动态分析课程总结最新版_天然气分析报告

一、天然气水合物热力学模型

1.理论基础

随着各种热力学研究的开展,现已有大量有关天然气水合物相平衡的数据和方法,可用来预测天然气水合物的形成。这些研究结果也有利于开发抑制天然气水合物形成的化学添加剂。一般说来,能影响溶液黏度性质的物质通常能抑制天然气水合物的形成。在工业应用上,甲醇是一种常用的阻凝剂。

Van der Waals和Platteeuw(1959)提出的热力学理论,一直是预测天然气水合物平衡模型的理论基础。Sloan(1990)指出,利用这些模型对Lw-H-V系统平衡压力的预测,误差应该不超过10%,而对温度的预测误差在2K左右。多年来,各国学者在Van der Waals和Platteeuw理论的基础上,提出了一些新的观点和天然气水合物相平衡预测的计算方法,对天然气水合物热力学模型的发展作出了贡献。

2.热力学模型

要描述各种天然气水合物相及其可能的多种共存流体相,需要使用一种以上的模型。状态方程是描述天然气水合物平衡的一种方法。为描述富水的流体相,Saito(1964)等使用了理想溶液方法(Raoult定律),其基本前提是,设水中储存气体的溶解度在常规条件下可以忽略不计,尽管有事实证明这种设的有效性令人质疑,但这种方法在过去一段时间内仍为大多数学者所偏爱。当需要进行天然气水合物抑制计算时,要根据Menten(1981)提出的计算方法,用活度系数对Rao-ult定律进行校正。虽然该方法的可靠性要优于Hammerschmidt方程(1939),但它不能用于评估阻凝剂(如甲醇)在共存相中的分布。为校正这个问题,Anderson等(1986)结合使用了Uniquac方程和用于超临界组分计算的亨利定律,计算液相中所有可凝聚组分的逸度。因此,要进行简单的天然气水合物抑制计算,有必要使用上述4个模型。由于这种内在的复杂性,对于现实中更复杂的系统,上述这些方法用处并不大。同时,这些方法都存在着收敛困难,不能作为进一步精确计算(如复合系统的稳定性分析)的基础。

Englezos等(1991)和Avlonitis等(1991)根据一个单一的状态方程,建立了全部流体相的模型。前者使用了有4个参数的立方状态方程,后者使用了有3个参数的立方状态方程,并开发了针对非对称相互作用的专用混合规则。根据目前的研究趋势看,对全部流体相使用单一的状态方程是最有发展潜力的方法。

3.模型的完善和发展

对天然气水合物相的理想固溶体,在设被圈闭的分子之间没有相互作用的前提下,Vander Waals等(1959)认为能够用一种Langmuir型吸附等温线描述固体天然气水合物相。他们利用这个设,证明天然气水合物相中水的化学势能与形成天然气水合物的气体性质无关,仅取决于天然气水合物相中两种不同类型空穴中气体的总浓度,天然气水合物与理想稀溶液具有相同的行为。在这个理论基础上,Parrish等(12)将用于计算分解压的天然气水合物模型延伸到多组分系统中。理想固溶体理论忽视了非理想状态所带来的影响,如“主”分子晶格的伸展或变形、被圈闭气体分子运动所受的限制,都有可能增加“主”分子和“客”分子的化学势。Hwang(1993)与他的同事们在分子动力学模拟的基础上,研究了“客”气体分子的大小对天然气水合物稳定性的影响。Avlanitis(1994)指出:这种方法的主要缺陷在于选取了不正确的势能参数,特别是乙烷的势能参数。为弥补这个缺陷,Avlonitis用一种折中方法优化了理想固溶体模型参数,在含甲醇或不含甲醇情况下,在Lw-H-V框架内,对天然的或合成的气体混合物都获得了令人满意的预测结果。

二、天然气水合物动力学模型

天然气水合物动力学是水合物领域的研究重点。通常以方程M+nH2O<=>[M·nH2O]表示水合物生成,这是一个气-液-固三相或气-固两相的多相反应过程,同时也是一个包含传热、传质和生成水合物反应机理的复杂反应方程,影响反应的条件很多,也很复杂。相对于天然气水合物热力学而言,对天然气水合物动力学的研究较少。天然气水合物动力学可以大略分为天然气水合物生成动力学和天然气水合物分解动力学两类。

1.天然气水合物生成动力学

针对目前研究亟待解决的水合物生成速率和效率问题,主要有以下两种研究方法(赵义等,2004):①热力学方法,即向反应体系中加入其他气体添加剂,让气体添加剂占据水合物结构中没有被占据的空腔,来降低水合物簇之间的转换活化能,提高水合物的晶体空腔填充率,从而达到促进水合物生成和提高水合物稳定性的目的,如向甲烷的水合物生成体系中加入少量的丙烷,就可以大大降低甲烷水合物的生成条件,并且生成的结构更稳定;②动力学方法,仅限于表面活性剂及助溶剂(hy-drotropes)的研究。对此有两种说:一是Sloan的观点,认为表面活性剂之所以促进水合物的生成,主要是因为它降低了气-液界面张力,增大了扩散传质速率,使气体更容易进入液相;二是Zhong等(2000)的观点,提出了一个4步骤的反应历程来解释观察到的现象,尚未得到充分的验证。以下对这4个步骤进行说明:

(1)气-水簇的形成

天然气水合物的成核过程是天然气水合物核向临界大小的靠近且生长的过程。气-水生长簇是天然气水合物形成的先兆。如果生长的核小于临界大小,核是不稳定的,可能在水溶液中生长或破裂。一个生长着的天然气水合物核,如已具有临界大小,就是稳定的,可以立即导致结晶天然气水合物的形成。

认识影响气-水簇形成的因素,有助于理解天然气水合物的成核过程。特别是水分子结构,它是指通过氢键相互联结水分子所形成的结构,在成核过程中起重要作用。冰是一种高度结构化的水,其水分子固定在一个呈四边形氢键结构的位置上。当温度升高到零点以上时,结构开始变得更加松散,与高度有序的冰的结构相比更加无序。

Sloan等提出了一种天然气水合物成核过程的分子机制,设想气-水簇开始形成临时结构,随后这些结构再生长成稳定的天然气水合物晶核。他们通过使用化学动力学方程,针对机制中设的每一种情况对成核过程进行了模拟。Lekvam和Ruoff也提出了反应作用的动力学机制。这种方法使用一种动力学速率模型,研究成核和生长过程,但他们的这种模型并没有强调天然气水合物核的稳定性。

Vysniauskas和Bishnoi在实验中使用不同来源的水进行了实验。结果显示,随着水的来源不同,平均成核开始期也不同。在实验中,来自于融化的冰水与实验中使用热自来水相比,前者的平均开始期较低;同样,使用来自于天然气水合物分解的水与使用热自来水相比,前者的平均开始期也较低,这就是所谓的“记忆效应”。这种现象在其他学者的研究中也出现过。研究发现,在已溶解的气体分子周围,水结构被强化了;这种作用于溶解气体分子周围的水结构强化现象,被认为是“疏水水合作用”现象。Frank等也提出了同样的观点。Glew在对甲烷天然气水合物和甲烷水溶液的热动力学性质进行研究时,发现了类似现象。Glew对甲烷-水系统分子模拟的研究显示,甲烷分子周围的水分子平均配位数对于Ⅰ型结构的小空穴来说,接近于21。Rahman和Stillinger认为,在溶解的溶质分子周围,水的网架与天然气水合物类型的孔型相似。另外,热力学分析显示,溶液具有很大的负熵,这正是水体内一种结构形成的标志。

气-水簇在天然气水合物成核过程中起了很重要作用。当溶液在过冷或过饱和状态下时,成核过程就发生了,学者们通常使用过冷或过饱和方法来研究成核作用。Bishoni等在研究时就用了过饱和方法,Kobayashi、Sloan等则用了过冷方法。

图10-5 典型的气体消耗简图

Bishnoi等在恒定温压下进行了天然气水合物形成实验。在实验温度下,实验压力比三相天然气水合物平衡压力要高,图10-5是实验过程中因气体溶解和天然气水合物形成,而导致的气体消耗的累积摩尔量随时间变化的曲线。

图10-5中A点的气体消耗摩尔量表示已溶解气体量,与三相天然气水合物平衡压力对应。A点与B点之间的准稳区域,代表着天然气水合物的成核过程。B点表示以突变方式出现的稳定临界大小天然气水合物核的出现点。Englezos和Bishnoi发现,在成核点B之前的溶解气体摩尔量,实际上要高于估算的二相(气-液)准稳定平衡状态下的摩尔量,估算来源于稳定区域的外推;气-水簇的形成能够耗尽在团块流体相中的天然气水合物形成的气体,从而导致超过两相值的气体溶解。Englezos等提出了计算天然气水合物核临界大小的方法,天然气水合物生长过程开始于图10-5中B点,并沿着线BC进行。根据Kobayashi和Sloan的实验结果,在容积不变的情况下,天然气水合物形成过程中的压力和温度轨迹如图10-6所示。图10-5中点A等同于图10-6中的点A。图10-6中点B也等同于图10-5中的点B,在B点,以突变方式形成的稳定天然气水合物颗粒的出现,导致了压力的突然下降。在图10-6中,点A与点B之间区域表示成核过程中的准稳定状态。过冷却方法和过饱和方法的相似性在图10-5与图10-6之间体现得相当明显。在图10-5中,与三相天然气水合物平衡相应,点A与点B之间,是处于准稳定状态的天然气水合物成核区域中气-水簇的生长区域。天然气水合物在点B的出现是突然的,Kobayashi描述它为“灾变性的”。尽管天然气水合物颗粒很小,但它们的数量很多,足以使溶液变得混浊。Kobayashi和Sloan认为,天然气水合物的突然出现使溶液不再处于过饱和状态,这样便导致了压力的剧降。

(2)天然气水合物的成核和生长过程

图10-6 天然气水合物形成实验温度-压力轨迹简图

从上面讨论可以看出,过冷方法与过饱和方法是等价的,对于天然气水合物成核过程来说都很重要。许多研究者建立了开始期和过冷之间的函数关系,过饱和同样也可以根据过冷却度进行转换。溶解中任何点的过饱和,都是在这点超过饱和浓度值的过量溶解气体浓度,可以用溶液中某一点的过饱和来判断稳定天然气水合物核最先出现在哪个地方。对于不流动系统,溶解气体浓度在分界面附近可能最高,天然气水合物的形成可能最先发生在气-液分界面上。对于搅拌系统来说,在溶液中最先形成天然气水合物的地方,取决于这点上溶解气体的浓度。溶液的水动力条件和气体溶解率可以影响天然气水合物成核的开始期。

Bishnoi等认为,天然气水合物成核作用开始期与过饱和作用相联系,根据对甲烷、乙烷以及二氧化碳天然气水合物的实验数据分析,揭示了成核开始期与过饱和的关系。当过饱和度减小时,成核开始期增大;当过饱和时,开始期增加到一个很大的值;相反,当过饱和度增加时,开始期减少到一个很小的值;当过饱和度很低时,开始期数据的分散程度很高,当过饱和度增加时,开始期数据的分散程度减小。天然气水合物成核过程,本质上是一个内在的随机过程,但高的过饱和度能够掩盖成核现象的随机本质,从而使观察到的开始期看起来像是早已被决定了一样。另外,天然气水合物成核的随机本质,也能够被实验系统中用来进行成核研究的其他因素所掩盖。在天然气水合物成核研究中,Parent和Bishnoi在原始实验状态下又观察到了开始期数据的随机性。

关于天然气水合物成核的研究还处于宏观层次上。对在溶液中的亚临界情况,还知之甚少。在建立基于分子级的模型之前,须通过实验研究揭示天然气水合物的成核机制。

天然气水合物的生长过程,是指作为固态天然气水合物的稳定天然气水合物核的生长,自20世纪60年代以来,许多学者就已对此进行了研究。在研究丙烷天然气水合物生长过程时,Knox认为晶体的近似大小取决于过冷度(指使液体冷到凝固点以下而不凝结),较高的过冷度主要产生较小的颗粒,并导致明显的晶体生长。Pinder通过研究天然气水合物形成动力学,提出天然气水合物形成的反应速率随渗滤作用而定。Barrer和Esge在研究天然气水合物动力学时发现,对氪形成的天然气水合物来说,其晶体生长有一个明显的开始期。Falabella使用类似于Barrer和Esge的实验装置进行了研究,也得到了相似的结论。Falabella还发现,对于甲烷来说,其天然气水合物生长也有一个开始期,他根据冰的动力学数据,通过进行等温压换算,提出了一个次级动力学模型。Sloan和Fleyfel通过实验,研究了环丙烷天然气水合物的生长动力学。针对在纯水中的各种气体和气体混合物,Bishnoi等一直进行着天然气水合物形成动力学的系统性研究,在实验中使用一个搅拌反应器,其中装有电解质和表面活化剂溶液。他们认为,在稳压条件下,全部气体消耗量是时间的函数。

(3)天然气水合物生长动力学模型

在研究早期,Vysniauskas和Bishnoi提出了一个关于气体消耗速率的半经验模型。后来,Engl-ezos等把只有一个可调节参数的天然气水合物生长动力学模型公式化,这个模型是一个以结晶化和团块传递理论为基础的模型;它设固体天然气水合物颗粒被一个吸附“反应”层所包围,吸附反应层外是一层不流动的液体扩散层,溶解的气体从围绕在不流动液中向天然气水合物颗粒-水分界面扩散;然后,气体分子由于吸附作用而进入结构化的水分子构架并结合在一起。当水分子过量时,分界面被认为是气体最易集中的地方(反应速率用已溶解气体的逸度替代其浓度)。

在三相天然气水合物平衡压力和颗粒表面温度下,在扩散层中,溶解气体逸度值从fb变化到fs;在吸附层中,逸度值直降至feq,围绕颗粒的扩散动力等于fb-fs;但是对于“反应”阶段来说,这个值是fs-feq。在稳定状态下,扩散阶段和“反应”阶段的速率相等,fs能够从单个速率表达式中消去,可得到每一个颗粒的生长速率如下:

非常规油气地质学

式中:R*是扩散和吸附反应过程的组合速率常数;Ap是每个颗粒的表面积。在溶解气体的逸度中,fb-feq值不同于三相平衡逸度中的fb-feq值,它指的是全部动力。当在良好的搅拌系统中时,R*值表示反应的内在速率常数,R*值由甲烷和乙烷天然气水合物形成动力学的实验数据决定。在没有任何附加参数的情况下,这个模型可成功地扩展到甲烷和乙烷混合物的形成动力学;在这个模型中,纯水中甲烷天然气水合物形成时获得的R*值,可以应用到电解质溶液中的天然气水合物形成模型中,两者的R*值是相同的。

在液态二氧化碳和水的分界面上,Shindo等提出了二氧化碳天然气水合物形成模型;他们设天然气水合物主要发生在液态二氧化碳中,而不是在水中。最近,Skovborg和Rasmussen使用实验的气体消耗数据(数据来源于Bishnoi等),提出了一种天然气水合物生成动力学模型;认为天然气水合物的形成,能够影响液体一侧的气-液团块传递系数。

(4)气-水体系中水合物的生成机理

天然气水合物结构和性质类似于冰(陈孝彦等,2004),气-水体系中天然气水合物生成时,气体分子首先要溶解到水中,一部分气体分子与水一起形成水合物骨架,类似于冰的碎片(周公度等,1995),形成了水合物结构中的第一种空穴。这些框架是一种亚稳定结构,相互结合形成更大的框架。在结合过程中,为保持水分子的4个氢键处于饱和状态,不可能做到紧密堆积,缔合过程中必然形成空的包腔,就形成了水合物结构中的另外一种空穴。另一部分溶解的气体分子通过扩散渗入到这些空穴中,并进行有选择的吸附;在吸附过程中满足Langmuir吸附定律,小气体分子进入小空穴,同时也能进入大空穴,大气体分子只能进入大空穴,即并不是每一个空穴都能被气体分子占据,这就解释了水合物平均只有三分之一左右的空穴被客体分子占据的机理。

陈孝彦等(2004)总结提出了气-水体系中水合物的生成机理,分为4步:①气体分子溶解过程,即气体分子溶解到水中;②水合物骨架形成过程,即气体分子的初始成核过程,溶解到水中的气体分子和水,形成一种类似冰碎片的天然气水合物基本骨架(一种空腔),这种骨架通过结合形成另一种不同大小的空腔;③气体分子扩散过程,即气体分子扩散到水合物基本骨架中;④气体分子被吸附过程,即天然气气体分子在水合物骨架中进行有选择的吸附,从而使水合物晶体增长。

2.天然气水合物分解动力学

(1)理论基础

人们提出了许多基于相平衡的热力学模型来预测一定条件下水合物的生成条件及其抑制途径(赵义等,2004),如通过改变其生成条件,来达到抑制目的的物理方法,包括干燥脱除法、加热保温法、降压法和加入非水合物形成气体法等,还包括通过加入添加剂的化学方法。

化学抑制法主要有热力学抑制剂和动力学抑制剂两种(赵义等,2004)。前者普遍取在生产设备和运输管线中注入甲醇、乙醇、乙二醇和氯化钠、氯化钙等,改变水合物热力学稳定条件,抑制或避免水合物生成;后者从降低水合物生成速度,以抑制水合物晶粒聚结和堵塞出发,通过加入一定量化学添加剂来改变水合物形成的热力学条件,显著降低水合物成核速率,延缓乃至阻止临界晶核生成,干扰水合物晶体的优先生长方向,影响水合物晶体的定向稳定性,具有用量少、效率高等优点,已成为了研究热点(吴德娟等,2000)。根据分子作用的不同机理,动力学抑制剂分为水合物生长抑制剂、水合物聚集抑制剂和具有双重功能的抑制剂,主要包括酰胺类聚合物、酮类聚合物、亚胺类聚合物、二胺类聚合物、共聚物类等,其中酰胺类聚合物是最主要的一类。

Holder等(1987)研究了在天然气水合物分解过程中的热传递过程,得出与成核沸腾现象相似的结论。Kamath等(1987)根据这种相似性,提出在丙烷分解期间,热传递率是ΔT的幂函数,其中天然气水合物表面的ΔT值与团块流体中的ΔT值是不相同的。后来,Kamath和Holder总结了它们的关系性,并用到甲烷天然气水合物分解过程中。

Selim等(1989)研究了甲烷水合物的热分解,认为水合物的分解是一个动态界面消融问题,并运用一维半无限长平壁的导热规律,建立了甲烷水合物的热分解动力学模型,Kamath等(1987)研究了甲烷和丙烷的热分解问题,认为水合物的分解主要受传热控制,其分解可与液体的泡核沸腾相比拟,而流体主体与水合物表面的温差ΔT是过程的推动力(Kamath et al.,1987)。

(2)实验研究

对天然气水合物分解动力学的基础研究是在带搅拌的大容积反应器中进行的,水合物以固体颗粒状分散于液体中,这用来研究分解本征动力学是可以的(周锡堂等,2006)。但用于研究与天然气生产有关,特别是天然气水合物分解的反应工程动力学,则缺乏实际意义(周锡堂等,2006)。自然赋存的天然气水合物可能是大块状的,更多的存在于多孔介质中。Sloan等报道过砂岩中的甲烷水合物生成和分解的一些实验数据,但没有仔细地研究水在孔隙里的分布情况;Circone等报道过以冰粒形成的水合物在272.5K的分解速率数据(Circone et al.,2000),但也没有提供相应的动力学方程。存在于冻土带或海底沉积物中的天然气水合物,与人工合成的、仅仅存在于自由水中的水合物颗粒是大不相同的。因此从工程实际来考虑,研究多孔介质中水合物的分解动力学行为更有意义。Yousif等第一次将水合物分解动力学的研究与天然气的生产结合起来(Yousif et al.,1991),不过其模型在估算水合物面积时却是经验性的。Goel等研究了天然气水合物的分解行为(Goel et al.,2001),运用发散状扩散方程,分别得出了关于大块状和多孔介质中的天然气水合物的分解动力学解析模型。然而该模型忽略了分解水的流动和分解气出速率的变化,严重影响了其有效性。Hisashi等研究了多孔介质中水合物的形成和降压分解问题(Hisashi et al.,2002)。在其实验中,分别用了多种粒度的玻璃珠和合成陶粒来模拟多孔介质。最终结果表明,不同介质中水合物分解的表观反应速率常数不同,所得回归方程也不一样(周锡堂等,2006)。因此,在确定自然存在天然气水合物的分解速率时,有必要研究当地介质的孔隙性质及其粒度分布。

Bishnoi等开展了对甲烷天然气水合物分解的实验研究,实验是在一个搅拌良好的反应器中进行的;天然气水合物在三相平衡压力以上存在;然后,在保持温度不变的条件下,把压力降低到低于三相平衡压力,这时,天然气水合物分解就开始了;实验在快速搅拌中进行,以保证避免团块传递的影响。他们提出,天然气水合物分解可能分为两个阶段:颗粒表面原结晶“主”格子破坏和随后的“客”分子从表面的解吸过程。Kim等提出了天然气水合物分解原内在动力学模型,他们设天然气水合物的颗粒为球形,并且被云雾状气体所包围,如图10-7所示。在图中,正在分解的颗粒被解吸“反应”层所围绕,再外层是排放出的气体云,天然气水合物颗粒分解速率公式如下:

非常规油气地质学

式中:kd为分解速率常数;Ap为颗粒表面积;feq为气体三相平衡逸度;fvg为气体分解策动力,定义为feq与fvg之差,即feq-fvg。

(3)研究进展和意义

与前文提到的对天然气水合物生长的研究一样,对天然气水合物分解的研究,应该包括对决定分解颗粒大小分布因素的研究。

图10-7 天然气水合物分解图

对天然气水合物分解和形成动力学的研究,给我们提出了大的挑战。天然气水合物形成被认为是一种包括成核过程和生长过程的结晶化过程。成核作用是一种内在的随机过程,它涉及气-水簇向具临界大小的稳定天然气水合物核的形成和生长问题。因较大的成核策动力和多相性的存在,成核作用随机性质不易被察觉。目前,对天然气水合物成核过程仍没有在分子级别上的测试方法。

天然气水合物生长包括作为固态天然气水合物的稳定水合核的生长,正在生长的天然气水合物颗粒表面积,强烈影响着生长速率。天然气水合物分解是一系列晶格的破坏和气体解吸过程,在分解时的热传递率与成核沸腾现象是相似的。应该深入研究天然气水合物颗粒在分解和生长过程中的大小分布,并应用于这些过程的模型化中。

尽管有多个天然气水合物形成模型已经被提出,但天然气水合物形成核的过程并没有完全被揭示。目前,科学家通过研究气体-水的接触面,已取得了一些实验上的进展,但是这些实验都是最近做的,并且至今没有充足的信息来提供一个确切的描述。这些实验通过研究熔点附近的热力学状态范围,来揭示与接近天然气水合物形成条件相联系的界面结构特征。在实验中,科学家把分子动力学模拟,应用到Ⅰ型甲烷天然气水合物和甲烷气体的接触面,发现接触面在270K以下是稳定的,在300K时发生熔解,同时发现了导致接触面稳定的压力条件。在伴随着表面层的无序化过程中,预熔现象是明显的。动力学性质显示了水平面格子振动的各向异性,这被认为是与在Ⅰ型天然气水合物(001)面上存在着晶轴相联系。这个意想不到的结果还有待于进一步研究。

在研究天然气水合物形成模型的同时,由于天然气水合物有时能对高纬度地区石油和天然气的运输造成意想不到的麻烦(如形成管塞),有的学者(Monte Carlo)也开始了怎样抑制天然气水合物形成的研究。通过实验研究发现,可以使用一种无毒的、能溶解于水的聚合物———科利当(PVP),来抑制天然气水合物的形成。Monte Carlo通过不同条件下PVP对单体、二聚物、四聚物、八聚物吸附性的研究,发现吸附作用主要在吡硌烷酮氧(pyrrolidone oxygen)和水面之间两个氢键的形成过程中出现。这种研究结果表明,通过在天然气水合物生长点上PVP的吸附,来抑制天然气水合物的形成是可行的,并且影响吸附的主要因素具有内在的统计性。

石油天然气关键参数研究与获取

天然气安全员岗位职责(精选15篇)

 在日常生活和工作中,需要使用岗位职责的场合越来越多,岗位职责的明确对于企业规范用工、避免风险是非常重要的。我们该怎么制定岗位职责呢?以下是我收集整理的天然气安全员岗位职责,仅供参考,欢迎大家阅读。

天然气安全员岗位职责 篇1

 一、认真贯彻执行《建筑法》和有关的建筑工程安全生产法令、法规,坚持“安全第一。预防为主”的方针,详细落实上级公司的各项安全生产规章制度;

 二、参与各项施组措施的编制(安全相关内容),有权行使安全一票否决制;

 三、控制安全动态,发现事故苗头并及时取预防措施,组织班组展开安全活动,提供安全技术咨询

 四、配合有关部门做好对施工人员的安全教育、节日的安全教育、各工种换岗教育和特殊工种培训取证工作,并记载在案。健全各种安全管理制度;

 五、组织、参与安全技术交底,对施工全过程的安全施行控制,并做好记载;

 六、参与每周一次以上的定期安全检查,及时处观工现场安全隐患,签发限时整改通知单;

 七、监视、检查操作人员的遵章守纪。遏止违章作业,严格安全纪律,当安全与生产发作抵触时,有权遏止冒险作业;

 八、辅佐上级部门的安全检查,照实汇报工程项目或生产中的安全情况;

 九、检查劳动维护用品的质量,反应运用信息,对进入现场运用的各种安全用品及机械设备,配合资料部门停止验收检查工作;

 十、贯彻安全保证体系中的各项安全技术措施,组织参与安全设备、施工用电、施工机械的验收。

 十一、参与对施工班组和分包单位的安全技术交底、教育工作,担任对分包单位在施工过程中的安全连续监控,并作好监控记载;

 十二、参与辅佐对项目存在隐患的安全设备、过程和行为停止控制,参与制定纠正和预防措施,并考证纠正预防措施;

 十三、担任普通事故的调查、剖析,提出处置意见,辅佐处置严重工伤事故、机械事故,并参与制定纠正和预防措施,避免事故再发作。

天然气安全员岗位职责 篇2

 1.协助车队安全生产,全面履行车队的安全管理工作。

 2.认真落实公司安全工作的各项管理规定,及操作规程。

 3.坚持在生产一线,检查车辆的技术情况,监督驾驶思想动态、驾驶技术和安全行车状况,及时处理现场安全问题,交通事故和治安事故,分析违法原因,综合治理,从根源上整改纠正,杜绝“病”车投入营运,防范交通事故发生。

 4.落实驾驶员出车前问询、告知制度。

 5.落实安全运输,保卫全过程的俺去监督制度。

 6.开展形式多样的培训、教育活动,做好记录,通过实际案例分析,教育驾驶员,反违章、防事故、消除安全隐患。

 7.掌握驾驶员思想和健康状况,及时化解各种矛盾,防止驾驶员带“病”开车。

 8.监督驾驶员合理作息,监督排班运营情况,杜绝疲劳驾驶。

 9.每月对驾驶员、保安员做一次全面考评,考评不合格者提出处理意见,报车队领导处理。

 10.安全检查、日查与月查、小查与大查、抽查与普查相结合,善于发现和从根源上纠正安全隐患,严处违法行为,以减少一般事故,杜绝重大事故发生。

 11.现场救援,处理行车事故,调查、分析事故原因,教育驾驶员,按照有关规定对肇事者提出处罚意见,执行公司的处罚决定。

 12.做好驾驶员招聘考核、违法、违规记录、责任事故、安全学习、培训、奖惩。

天然气安全员岗位职责 篇3

 1、在项目经理的领导下,对施工现场进行安全监督、检查、指导,并做好安全检查记录;

 2、每项工程必须按公司规定,组织安全教育、安全技术交底以及安全措施的培训等。

 3、认真做好安全台账,组织安全生产检查。

 4、发现重大安全隐患,应立即取有效补救措施,并及时汇报,将隐患消灭在萌芽状态。

 5、正确填报施工现场安全措施检查情况的安全生产报告,定期提出安全生产的情况分析报告的意见;

 6、严格履行职责,杜绝事故发生。

天然气安全员岗位职责 篇4

 1、按照建筑施工安全文明标准(JGJ59-99)及国家、地方及公司对安全文明施工的标准、规范和规程。执行安全生产的各项规定。代表公司执行企业安全生产主体责任对项目部的具体贯彻落实。

 2、参与施工组织设计中安全技术措施的制订及审查。

 3、巡视检查施工现场,监督各项安全规定的实施与安技措施的落实,消除事故隐患,分析安全状态,防止事故发生,不断改进安全管理和安全技术措施。

 4、对职工进行安全生产的宣传教育及交底和对特种人员的考核。

 5、正确行使安全否决权,做到奖罚分明,处事公正,同时做好各级职能部门对本工程安全检查的配合工作。

 6、参与工伤事故的调查和处理,及时总结经验教训,防止类似事故重复发生。

 7、落实项目周检工作,定期召开班组、安全动态分析会,贯彻落实安全教育和季节性的'安全教育。

 8、组织脚手架、电气及机械设备等的安全技术验收,落实保养措施。

 9、对过程产品和最终产品进行防护,对有特殊防护要求的产品编制专门防护方案并向施工人员交底。

天然气安全员岗位职责 篇5

 1、负责检查各项安全规定和措施的落实,对查出的不安全隐患,立即监督整改,并做好工作记录;

 2、负责实施公司所有范围内质量安全监督管理工作;

 3、负责实施公司全员的质量安全培训和应急预案的演练工作;

 4、负责按规定程序报告各类质量安全事故,协助领导组织并参加事故的调查处理;

 5、负责计量器具、灭火器的年检;

 6、完成上级领导交办的其他工作。

天然气安全员岗位职责 篇6

 1、负责项目的安全工作及日常环保工作,贯彻实施公司管理方针及目标、本部门的目标、指标及方案;

 2、负责坚决制止违章指挥、违章作业、违反安全操作规程的人和事,并根据公司制度给与相应处罚;

 3、负责在发生安全事故时及时组织人员疏散和取抢救措施,保护现场,协助做好事故调查处理工作;

 4、负责强化安全生产管理,组织施工现场安全检查,发现隐患及时取措施,并及时取报告、整改措施;

 5、负责文明施工、洁净管理工作的开展,制定完善的安全、环保等相关管理制度,并落实实施。

天然气安全员岗位职责 篇7

 1、负责收集国家安全、环保及职业卫生管理方面的法律法规及标准,并确保在公司内得到实施;

 2、负责制定公司的安全、环保管理制度、规范并监督落实执行;

 3、负责公司年度污染物排放、固体废物处置的申报、职业危害场所危害因素的检测;

 4、负责公司安全、环保、职业卫生设施的监管,确保其处于正常状态;

 5、负责公司安全教育管理及员工职业健康管理工作;

 6、负责员工安全培训档案及职业健康档案的建立、更新及维护工作;

 7、负责组织公司安全检查、隐患排查及监督整改事项的落实和申报工作;

 8、协助公司生产项目环境影响评价、职业卫生评价的组织、材料准备工作;

 9、参与公司内安全环保事故调查、分析并提出处理意见,负责落实整改和防范措施。

天然气安全员岗位职责 篇8

 1、模范地执行安全生产各项规章制度和领导提出的有关安全方面的要求,协助班组长做好本班组的安全工作,理解专职安全员的业务指导。

 2、协助班组长组织全班安全学习,加强日常安全教育和宣传工作,搞好新工人的安全教育。

 3、反映班组安全生产状况和职工的要求,协助落实改善措施。

 4、管理本班组的安全工具、设施、标志等器材。负责对现场消防器材、开关箱和安全警示标志、标语等其它物品的管理;确保其完好有效,确保疏散通道和安全出口畅通。

 5、及时发现和处理事故隐患,对不能处理的隐患要及时上报,并有权制止违章作业,有权抵制和越级上告违章指挥行为。

 6、检查现场施工人员的安全生产防护用品的使用;检查评定安全用品和劳动保护用品是否达标,督促防范措施的落实;负责伤亡事故的统计上报和参与事故的调查,不隐瞒事故情节,严格执行“四不放过”的原则。

 7、负责各自管理范围的安全管理工作。协助安全领导小组工作,落实实施安全生产规章制度。

 8、发现事故隐患及时组织人员处理,一旦发生事故应及时上报项目部安全领导小组,并即刻组织现场抢救,参与伤亡事故的调查、处理工作。

 9、对于特种作业人员,严格按照国家劳动部颁发的《特种作业人员安全技术培训考核管理规定》持证上岗,严禁无证操作,并督促有关人员取得《特种作业人员操作证》,特种作业人员每两年进行一次复审,复审不合格者不准上岗。

 10、负责现场礼貌施工管理:弃土覆盖、工完料清、现场清理、洒水、礼貌穿戴、民工宿舍管理、民工食堂检查管理、材料码放。

 11、负责现场交通、用电和地下管线的安全管理。

 12、熟悉重大危险源和风险点,并按防护措施进行相应管理;实行安全终止权,有权制止任何人的违章行为,承担项目安全、礼貌施工管理职责,兼职安全员要不断的检查生产的每一个环节,不要出现疏漏之处,造成损失。

天然气安全员岗位职责 篇9

 1、兼职安全员由所在部门领导,在公司质量安全部指导下开展日常基层安全生产管理工作。

 2、负责所辖区域的安全管理工作,任何人员进入生产现场服从兼职安全员的管理。

 3、每日对所辖区域(工作)进行安全巡视检查不少于2次,并做好巡视检查记录。

 4、负责督促所辖区域班组(员工)落实各项安全生产管理制度、职责制度,全面执行安全技术操作规程,坚持“四不伤害”(即不伤害自己,不伤害别人,不被别人伤害,我保护他人不受伤害),杜绝“三违”(即“违章指挥,违章操作,违反劳动纪律),从源头上控制安全生产事故发生。

 5、负责所辖区域班组成员及新录用员工、调岗员工的部门级安全教育培训;监督所辖班组进行班前会、班后会和安全生产日活动;按要求组织相关人员参加安全生产事故应急抢险救援演练。

 6、负责督促所辖区域的安全生产事故隐患排查与治理、生产现场6S管理工作推进;检查员工正确穿戴、使用劳动防护用品及职业危害防护用品、用具;宣传教育职工增强职业病预防意识。

 7、负责督促所辖区域班组做好安全防火工作,加强对所属人员的安全防火教育培训,提高广大职工临灾时抢险避险潜力;参与公司开展的经常性的消防安全检查,消除火险隐患,保障员工生命和公司财产安全。

 8、对发现的各种安全生产事故隐患,有逐级报告的义务;对发现的各种违章行为,有批评教育和对照《安全生产奖惩办法》做出相应处罚的权利;对所辖区域发生的各种安全生产事故负责;对所辖区域的安全设施、安全警示牌的完好、整洁负责。

 9、按“四不放过”原则,参加所辖区域发生的各种安全生产事故的调查、分析,并提出自己对事故预防的措施和对相关事故职责人的处理意见。

 10、按时参加公司组织的安全生产工作会议和活动。

 11、及时向所辖区域人员传达安全生产工作的要求和提示。

 12、对所辖区域安全生产工作表现优秀的班组或人员能够向质量安全部提出给予奖励的权利。

天然气安全员岗位职责 篇10

 1、兼职安全员由所在单位领导,在公司安全处指导下开展日常基层安全生产管理工作。

 2、负责组织本部门或所在班组全体职工,认真学习贯彻国家安全生产法律、法规和“安全第一,预防为主,综合治理”的安全生产方针;组织落实各项安全生产管理制度、职责制度,全面执行安全操作规程,坚持“四不伤害”,杜绝“三违”,从源头上控制安全生产事故发生。

 3、负责本部门或所在班组成员及新录用员工、调岗员工的安全教育培训;组织进行上岗前安全培训、班前、班后会和安全生产日活动;按要求组织参加安全生产事故应急抢险救援演练;按要求全面、详实、规范记录安全台帐。

 4、负责组织开展本单位或班组所在岗位的安全生产事故隐患排查治理、生产现场定置管理;督促职工正确穿戴、使用劳动防护用品及职业危害防护用品、用具;宣传教育职工增强职业病预防意识。

 5、负责本部门或班组所在岗位的安全防火工作,加强对所属人员的安全防火教育培训,提高广大职工临灾时抢险避险潜力;维护好所在岗位的消防设施和灭火器具;开展经常性的消防安全检查,消除火1险隐患,保障职工生命和公司财产安全。

 6、对发现的各种安全生产事故隐患,有逐级报告的义务;对发现的各种违纪行为,有批评教育和提来源理意见的`权利;对本单位或所在岗位发生的各种安全生产事故负责;对所在单位或岗位设置的安全设施、安全防护用品、用具、安全警示牌的完好、整洁负责;对本部门或所在班组成员的违纪行为负责。

 7、按“四不放过”原则,参加公司发生的各种安全生产事故的调查、分析,并提出自己对事故预防的措施和对相关事故职责人的处理意见。

 8、按时参加公司或部门组织的有关安全生产方面的会议和活动。

 9、及时向所属人员传达安全环保部在兼职安全员例会上的安全生产工作提示。

天然气安全员岗位职责 篇11

 1、认真学习、宣传、贯彻、执行国家、各级和上级行业管理部门各类安全生产法律、法规和企业安全生产管理规章制度。

 2、所开展的一切工作向部门职责人负责。

 3、在公司安全科的领导下,配合开展安全生产管理工作,履行辖区内日常安全生产管理职责。

 4、认真学习安全管理专业知识,努力提高业务技能。

 5、认真完成各项安全生产任务,做好本单位(部门)安全生产动态监管,查找事故隐患,纠正违章操作,落实安全生产措施。

 6、配合公司安全管理职能部门做好安全生产基础工作,做好安全原始记录,建立健全各类安全档案、资料、台帐,准确汇报各类安全生产统计报表,如实填写驾驶员安全行驶里程。

 7、所属单位发生行车事故或其它生产安全时,应立即赶赴事故现场,配合公司安全员做好事故的救援、处理和其它交办的工作。

 8、配合公司组织好员工的安全学习、培训、考核工作,深入细致地做好调查研究,为领导带给安全管理准确数据。

 9、配合公司做好所属单位的人员、车辆以及各类设备设施的安全检查、隐患整改以及隐患整改合格项目的跟踪调查验证等工作。

 10、对所开展的安全工作实行“一票否决”制。

 11、用心完成上级交办的其它工作任务。

天然气安全员岗位职责 篇12

 1、用心贯彻执行国家安全生产有关法律、法规、方针、政策,综合管理本单位安全生产的日常工作。

 2、协助本单位建立健全安全生产职责制、安全生产管理规章制度、操作规程,落实安全生产各项具体工作。

 3、定期或不定期深入作业场所,组织开展各类安全检查,做好检查记录,对检查发现的隐患,提出整改意见,并督促落实整改。

 4、组织本单位的安全生产宣传、教育和培训工作;辅导兼职安全员学习安全专业知识。

 5、拟订年度、季度安全工作,用心做好本单位安全生产档案资料的收集、整理、保管、移交和各种报表的填报等基础工作。

 6、协助单位制定生产生产安全事故综合应急预案、专项应急预案和现场处置方案,并组织演练。

 7、参与生产安全事故的调查和处理,负责事故的统计和分析报告,协助有关部门提出防止事故的错失并督促落实。

 8、做好安全生产文件的上传下达,及时反馈有关安全生产的各种状况。

 9、熟悉使用《安全标准化管理系统》管理日常安全生产各项工作。

 10、全面、深入了解本单位安全生产工作,向部门负责人汇报有关状况、存在问题与不足,提出意见与推荐。

天然气安全员岗位职责 篇13

 1、制定安全条例和文明施工标准,根据项目要求及国家法规要求制定相关标准。

 2、办理开工前安全监审和安全开工审批,编制工程安全监督,上报安全措施和分项工程安全施工要点,及时办理安全开工审批,确保工程顺利开工。

 3、调查研究生产中的不安全因素,提出改进意见,参与审查安全技术措施、,并对贯彻执行情况进行督促检查。

 4、安全宣传教育和管理工作,协助制定并督促执行安全技术培训工作,参与有关施工安全组织设计和各种施工机械的安装、使用验收,监督和指导电器线路和个人防护用品的正确使用。

 5、制止违章作业和违章指挥,发现重大隐患时,当安全与进度发生矛盾时,必须把安全放在首位,有权暂停作业,撤出人员,及时向上级主管领导报告,并提出改进意见和措施。

 6、施工现场伤害事故的处理,在施工现场发生重伤以上事故时,应赴现场组织抢救,保护现场,并及时上报公司事故情况,进行工伤事故统计、分析和报告。

 7、日常监理巡查,要对现场安全防护、道路运输、风水管道、支护挂网、机械设备、电器线路、通风防尘、敲帮问顶、防火防爆等,是否符合安全管理规定标准。如发现施工现场存有不安全隐患,应及时提出改进措施,并对改进后的设施进行检查验收。

 8、填写施工现场安全检查情况的交班报告,确保下一班的施工作业安全,定期编写安全

天然气安全员岗位职责 篇14

 1、认真贯彻执行党和国家安全生产方针、政策、指示、规定;

 2、负责进行二、安全教育,协助车间科室领导组织好每周一的安全日活动;

 3、参加制定安全生产制度和安全技术规程,并经常检查执行状况;

 4、编写二级安全教育大纲,经常对本单位职工进行安全,知识教育,建立安全技术档案;

 5、经常深入各岗位检查安全生产状况,制止违章指挥和违章作业,遇到重大险情果断取措施并报告领导,查出的事故隐患及时组织力量限期整改;

 6、参加本单位扩建、改建工程设计的审查,验收工作;

 7、负责管理本单位安全、。防火设施、检查监督本单位人员劳保用品的合理使用,

 8、协助车间领导审批二级用火,并取可靠的安全措施,使动火作业安全顺利进行;

 9、定期向安全部门汇报工作,按时参加安全部门组织的各项安全活动;

 10、参加本单位各类事故的调查处理,负责统计上报协助车间主任落实各项安全措施。

天然气安全员岗位职责 篇15

 (1)模范执行安全生产各项章制度,协助班组长做好本班组的安全生产工作,理解专职安全员的业务指导。

 (2)协助班组长组织安全学习、记录和处理小事故,加强本组日常安全教育和宣传工作,整理、反映班组安全生产状况和要求。

 (3)协助班组长搞好新工人,变换工种人员的安全生产教育工作和专业工种的技术培训。

 (4)参加作业前的现场检查和班前安全交底教育工作,对施工区域,使用的设备、机具、施工用电状况进行检查,发现问题及时整改或上报。

 (5)有权制止违章作业,有权抵制和越级上告违章指挥事项,及时发现和处理事故隐患,本人或本组不能处理的危险因素要及时报告。

 (6)发生伤亡事故立即组织抢救伤员、保护现场和迅速上报。参加事故分析处理和安全检查、协助领导落实整改措施。

;

西安石油大学石油与天然气工程学科研究生培养方案

评价参数直接影响评价方法的有效性,不同类型的参数作用不同。有效烃源岩有机碳下限、产烃率图版、运聚系数是成因法的关键参数;最小油气田规模对统计法计算结果有较大影响;油气丰度是应用类比法的依据,由已知区带的油气丰度评价未知区带的丰度;可系数是将地质量转化成可量的关键参数。

(一)刻度区解剖

1.刻度区的定义

刻度区解剖是本次评价的特色之一,也是油气评价的重要组成部分。刻度区解剖的目的是通过对地质条件和潜力认识较清楚的地区的分析,总结地质条件与潜力的关系,建立两者之间的参数纽带,进而为潜力的类析提供参照依据。

刻度区是为取准评价关键参数,以保证评价的客观性而选择的满足“勘探程度高、探明率高、地质认识程度高”三高要求的三维地质单元。刻度区可以是一个盆地(凹陷)、一个油气运聚单元、一个区带、一个成藏组合、一个层系或一个二级构造带等。为了正确和客观认识地质条件和潜力,刻度区的选取在考虑“三高”条件的基础上,应尽量考虑不同地质类型的综合,这样可以更充分体现油气丰度与地质因素之间的关系。

2.刻度区解剖内容与方法

刻度区解剖主要围绕油气成藏条件、量及参数三个核心展开,剖析三者之间的关联规律和定量关系。

(1)成藏特征和成藏主控因素分析。成藏特征和成藏主控因素分析实质上是对选择的刻度区进行成藏特征总结,精细刻画出成藏的定性、定量的主控因素与参数,便于评价区确定类比对象。在一个含油气盆地、含油气系统、坳陷、凹陷的成藏规律刻画中,其成藏特征差异大,故一般最好选择以含油气系统(或坳陷)及其间的运聚单元作为对象,更便于有效的类比应用。油气运聚单元是盆地(凹陷)中具有相似油气聚集特征的独立的和完整的石油地质系统,是以盆地(凹陷)的油气聚集带为核心,并包含为该油气聚集带提供油气源的有效烃源岩。油气运聚单元是有效烃源岩、油气运移通道、有效储集层、有效盖层、有效的圈闭等要素在时间和空间上的有机组合。一个油气运聚单元可以有多个有效烃源岩体和烃源岩区为其供烃,但同一个油气运聚单元的油气聚集特征是相似的。一个油气运聚单元可以只包含一个油气成藏组合,也可以包含在纵向上叠置的多个油气成藏组合。因此刻度区地质条件的评价与定量刻画就是按照运聚单元→成藏组合→油气藏的层次路线综合分析烃源条件、储层条件、圈闭条件、保存条件以及配套条件等油气成藏条件。盆地模拟是地质评价流程中的一个重要组成部分,其作用主要体现在三个方面:其一是通过盆地模拟反映流体势特征,进而确定油气运聚单元的边界;其二是提供烃源参数,如生烃强度、生烃量、有效烃源岩面积等;其三是通过关键时刻的获取来反映油气成藏的动态作用过程。

(2)油气量确定。刻度区量计算与一般意义上的量计算稍有不同,正是由于刻度区的“三高”背景,特别是选定的刻度区探明程度越高越好,计算出的量更准确有利于求准各类评价参数。在本次刻度区解剖研究中,主要用了统计法来计算刻度区的量,统计法中包括油藏规模序列法、油藏发现序列法、年发现率法、探井发现率法、进尺发现率法以及老油田储量增长法,不同方法估算出的量用特尔菲加权综合。盆地模拟在计算生烃量方面技术已经比较成熟,因此刻度区(运聚单元)的生烃量仍由盆地模拟方法计算。

(3)油气参数研究。通过刻度区解剖,建立了参数评价体系和预测模型,获得了地质条件定量描述参数、量计算参数和经济评价参数,如运聚系数、丰度等关键参数。从刻度区获得的量与生油量之比可计算出运聚系数,刻度区的量与面积之比可获得单位面积的丰度,还可得到其他参数等。由于盆地内坳陷(凹陷)内各单元成藏条件差异,求得的参数是不同的,故细分若干运聚单元,求取不同单元的参数,这样用于类比区会更符合实际。

3.刻度区研究成果与应用

通过刻度区解剖研究,系统地获得运聚系数、油气丰度等多项关键参数,为油气评价提供各类评价单元类比参数选取的标准,保证评价结果科学合理。如中国石油解剖的辽河坳陷大民屯凹陷级刻度区,通过对其烃源条件、储层条件、圈闭条件、保存条件以及配套条件五方面精细研究,获得了22项量化的成藏条件的系统参数。根据大民屯凹陷内划分的六个运聚单元,分别计算各单元的生油量和量,直接获得六个单元的运聚系数。同时计算出各运聚单元单位面积的量,获得不同成藏条件下的丰度参数(表4-5)。

表4-5 大民屯凹陷刻度区解剖参数汇总表

在中国石油128个刻度区的基础上,各单位根据评价需要,又解剖了一定数量的刻度区。其中,中国石油利用已有刻度区128个,新解剖刻度区4个,共应用132个;中石化新解剖42个;中海油新解剖4个;延长油矿新解剖3个。各项目共应用了181刻度区,这些刻度区涵盖了我国主要含油气盆地中的大部分不同类型的坳陷、凹陷、运聚单元和区带,基本满足了不同评价区的需要。各种类型刻度区统计见表4-6。

表4-6 各种类型刻度区统计表

(二)有效烃源岩有机碳下限

有效烃源岩有机碳下限是指烃源岩中有机碳含量的最小值,小于该值的烃源岩生成的烃量不能形成有规模的油气聚集。有效烃源岩有机碳下限是确定烃源岩体积的主要参数,直接影响生烃量的计算结果。

在大量烃源岩样品分析化验和有关地质资料研究基础上,明确了不同岩类有效烃源岩有机碳下限标准。陆相泥岩有效烃源岩有机碳下限为0.8%,海相泥岩为0.5%,碳酸盐岩为0.2%~0.5%,煤系源岩为1.5%。例如,陆相泥岩TO C与S1+S2关系表明,S1+S2在TO C为0.8%时出现拐点,有效烃源岩有机碳下限定为0.8%;碳酸盐岩气源岩残余吸附气量与有机碳关系表明,残余吸附气量在有机碳为0.2%处出现拐点,有效烃源岩有机碳下限定为0.2%(图4-1、图4-2)。

图4-1 陆相泥岩TOC与S1+S2关系图

图4-2 碳酸盐岩气源岩残余吸附气量与有机碳关系图

对于勘探实践中已经发现油气藏,但烃源岩有机碳含量未达统一下限的盆地,根据实际情况可进行适当调整。如柴达木盆地柴西地区,在分析了大量烃源岩有机碳和S1+S2指标资料后,明确该区有机碳含量下限为0.4%时,即达到有效烃源岩标准,并被发现亿吨级尕斯库勒大油田的勘探实践所证实。在渤海湾盆地评价过程中,建立起相对统一的有效烃源岩丰度取值下限标准:碳酸盐岩气源岩丰度下限取0.2%,碳酸盐岩油源岩丰度下限取0.5%,湖相泥岩丰度下限取1.0%。

有效烃源岩有机碳下限的基本统一,保证了生烃量计算标准的相对一致和全国范围内的可比。

(三)产烃率图版

烃源岩产烃率图版是用盆地模拟方法计算烃源岩生烃量和量的关键参数。产烃率图版一般用烃源岩热模拟实验方法获得。

1.液态烃产率图版

利用密闭容器加水热模拟实验方法,对中国陆相盆地不同类型烃源岩进行了热模拟实验。模拟实验所用样品取自松辽、渤海湾等10个盆地,包括侏罗系、白垩系和古近系的湖相泥岩、煤系泥岩和煤3大类烃源岩。其中湖相泥岩烃源岩的有机质类型包括Ⅰ型、Ⅱ1型、Ⅱ2型和Ⅲ型,煤系泥岩烃源岩的有机质类型包括Ⅱ2型和Ⅲ型,煤烃源岩的有机质包括Ⅱ1型、Ⅱ2型和Ⅲ型。根据模拟实验结果,编制了不同类型烃源岩的液态烃产率图版(图4-3、图4-4、图4-5)。

图4-3 湖相泥岩烃源岩液态烃产率图版

图4-4 煤系泥岩烃源岩液态烃产率图版

图4-5 煤烃源岩液态烃产率图版

2.产气率图版

由于生物气生气机制与干酪根成气和原油热裂解气的生气机制不同,因此,其产气率与干酪根和原油裂解气产气率求取方式不同。

(1)生物气产气率。对生物气源岩样品在25℃~75℃的条件下进行细菌培养产生生物气,由此得到不同温阶下各类有机质的生物气产率。在模拟实验结果的基础上,结合前人的研究结果,分别建立了淡水环境、滨海环境和盐湖环境中不同类型有机质的生物气产气率图版及演化模式。

(2)干酪根和原油裂解气产气率。对于不同类型气源岩油产气率,国内外学者及一、二轮评价中已做过大量的工作。较多的实验是应用热压模拟方法对各种类型烃源岩进行产油及产气率实验,这种方法所计算的产气率包括了原油全部裂解成气的产率,亦即常说的封闭体系下源岩的产气率,所得到的天然气产率是气源岩的最大产气率。另一种求取气源岩产气率的方法是在开放体系下对源岩进行热模拟实验,各阶段生成的天然气和原油均全部排出源岩,原油不能在源岩中进一步裂解为天然气。这两种情况都是地质中的极端情况。但是实际的地质条件大多是半开放体系,在这种情况下,源岩生成的油既不能全部排出烃源岩,也不能完全滞留于源岩中。不同地质条件下亦即开放程度不同情况下源岩产气率如何计算?具体方法为:求得封闭和开放体系下相同类型源岩的产气率,将上述两种体系下的产气率图版(中值曲线)输入盆地模拟软件中,得出烃源岩层在不同渗透条件下产气率图版。

(四)运聚系数

运聚系数是油气聚集量占生烃量的比例,是成因法计算量的一个关键参数,直接影响量计算结果。运聚系数的确定方法包括运聚系数模型建立法和运聚单元成藏条件分析法。

1.运聚系数模型建立法

通过刻度区解剖,确定影响运聚系数的主要地质因素及其与运聚系数的相关关系。刻度区解剖研究表明,烃源岩的年龄、成熟度、上覆地层区域不整合的个数和运聚单元的圈闭面积系数等地质因素与石油运聚系数之间存在相关关系。依此建立地质因素与石油运聚系数之间关系的统计模型,包括双因素模型和多因素模型。双因素模型(相关系数为0.922)的地质因素选用烃源岩年龄和圈闭面积系数:

lny=1.62-0.0032x1+0.01696x4

多因素模型(相关系数为0.934)的地质因素选用烃源岩年龄、烃源岩的成熟度、区域不整合个数和圈闭面积系数:

lny=1.487-0.00318x1+0.186x2-0.112x3+0.02118x4

式中:y——运聚单元的石油运聚系数,%;

x1——烃源岩年龄,Ma;

x2——烃源岩成熟度(Ro),%;

x3——不整合面个数;

x4——圈闭面积系数,%。

2.运聚单元成藏条件分析法

依据刻度区提供的大量运聚系数,依盆地类型和影响运聚系数的主要地质因素,分类建立运聚系数取值标准与应用条件。在评价中,根据刻度区解剖结果,确定了油气运聚系数分级取值标准(表4-7)。在评价中得到了推广应用,取得了良好的效果。

表4-7 石油运聚系数分级评价表

(五)最小油气田规模

最小油气田规模是指在现有工艺技术和经济条件下开地下,当预测达到盈亏平衡点时的油气田可储量。最小油气田规模对统计法计算的量结果有较大影响。为此,中国石油天然气集团公司等三大石油公司和延长油矿管理局对最小油田规模进行了专门研究。

通过对不同油价、不同开发方式和未来可能技术条件下最小油气田规模研究,确定了不同地区的最小油气田规模的取值。在地理环境相对较好的东部地区,其勘探开发成本较低,最小油气田规模一般在10×104~30×104t,在地理环境相对较差的西部地区,其勘探开发成本高,最小油气田规模一般在50×104t以上,对于海域来说,油气勘探开发成本更高,最小油气田规模更大,一般在150×104~500×104t。

(六)丰度

油气丰度是指每平方公里内的油气量,是类比法计算量的关键参数。通过统计分析,建立了丰度模型和取值标准。

1.丰度模型

通过刻度区解剖,建立刻度区内评价单元油气丰度和相关地质要素之间的统计预测模型:

新一轮全国油气评价

式中:y——运聚单元的石油丰度,104t/km2;

x1——烃源岩生烃强度,104t/km2;

x2——储集层厚度/沉积岩厚度,小数;

x3——圈闭面积系数,%;

x4——不整合面个数。

2.丰度取值标准

通过统计不同含油气单元丰度的分布特点,结合地质成藏条件,总结出各类刻度区丰度的取值标准。

(1)不同层系丰度:古近系凹陷由于成藏条件优越,成藏时间晚,石油地质丰度一般大于20×104t/km2;中生代凹陷成藏时间相对较长,石油地质丰度相对较低,一般约为10×104t/km2;古生代凹陷由于生、储层时代老,多期成藏多期改造、破坏,预计其丰度更低。

(2)不同类型运聚单元丰度:中新生代断陷或坳陷盆地长垣型、潜山型和断陷型中央背斜构造型,石油地质丰度高,一般大于40×104t/km2;中新生代裂陷盆地、坳陷盆地边缘构造型和古近系缓坡构造型石油丰度次之,一般为10×104~30×104t/km2;中生代盆地岩性型和古生代压陷盆地的构造型石油丰度相对较低,一般小于10×104t/km2。

(3)不同区块或区带级丰度:区块或区带级石油丰度差异更大,从小于1×104t/km2到大于200×104t/km2。其中潜山型、岩性—构造型、披覆背斜区块丰度较高,一般大于50×104t/km2,最大可大于200×104t/km2。构造—岩性型、断裂构造型丰度一般为30×104~50×104t/km2。地层—岩性型、断鼻型以及裂缝型区块、丰度较低,一般小于30×104t/km2。

通过刻度区解剖标定多种成藏因素下评价单元的丰度,不但为广泛应用类比法计算量提供了可靠的参数,同时也摆脱了过去以盆地总量为基础,利用地质评价系数类比将量分配到各评价单元的做法,使类比法预测的油气量在空间位置上更准确,提高了油气空间分布的预测水平。

(七)可系数

国外主要用建立在类比基础上的统计法计算油气可量,而我国第一轮、第二轮全国油气评价没有计算油气可量。本轮评价开展的油气可系数研究,通过可系数将地质量转化为可量,这在国内外油气评价中尚属首次。可系数是指地质中可出的量占地质量的比例,是从地质量计算可量的关键参数。

可系数研究与应用是常规油气评价的重要组成部分,主要目的是通过重点解剖、统计和类析方法,对我国油气可系数进行研究,为科学合理地计算油气可量提供依据,进而对重点盆地和全国油气可潜力进行评价。

1.评价单元类型划分

为使可系数研究成果与评价单元划分体系有机结合,遵循分类科学性、概括性和实用性三个基本原则,以油气类型、盆地类型、圈闭类型、储层岩性、储层物性等地质因素为依据,对评价单元进行了分析和分类,将国内石油评价单元分为中生代坳陷高渗、古近纪与新近纪断陷盆地复杂断块高渗等24种类型,天然气评价单元分为克拉通盆地古隆起、前陆盆地冲断带等16种类型(表4-8、表4-9)。

表4-8 不同类型评价单元石油可系数取值标准

表4-9 不同类型评价单元天然气可系数取值标准

2.刻度油气藏数据库的建立

已发现油气赋存在油气藏中,建立刻度油气藏数据库是统计已发现油气收率、分析影响收率主控因素、预测油气可系数的基础。刻度油气藏是油气可系数研究中作为类比标准的,地质认识清楚、开发程度高、已实施二次油或三次油技术的油气藏。

刻度油气藏选择原则:①典型性——能代表国内外主要的油气藏类型,保证类比法应用基础的广泛性;②针对性和实用性——针对油气评价,有效地指导相应类型评价单元油气可系数的确定;③开发程度高——油气藏开发程度高,地质参数和开发参数基本齐全;④三次油技术应用具有代表性——尽量选择已实施三次油技术的油藏,保证技术可系数的可靠性。

对国内43个油藏、30个气藏,国外59个油藏、22个气藏进行了剖析:收集整理每个油气藏的主要地质和开发参数;每个油气藏的地质条件主要包括储层特征、圈闭条件、流体性质等,开发条件主要包括开方式、开速度、增产措施等;研究不同因素对收率的影响程度,进而确定该油气藏收率的主控因素;针对开方式的不同,油藏的收率可分为一次、二次或三次收率;气藏主要是一次收率。通过对每个油气藏的地质条件、开发条件和收率进行分析,建立起国内外刻度油气藏数据库。

3.可系数主控因素分析

对影响可系数的地质条件、开发条件和经济条件进行了分析,建立起可系数主控因素的评价模型。

(1)在大量统计和重点解剖的基础上,对油气地质条件中的因素逐一进行分析,并提炼出15项油气收率的主控因素,即盆地类型、储层时代、圈闭类型、沉积相类型、储层岩性、储层厚度、储集空间类型、孔隙度、渗透率、埋深、含油饱和度、原油粘度、原油密度、变异系数、原始气油比。

(2)在诸多开发条件中,提高收率技术是极为重要的因素,不同提高收率技术适用条件不同,其提高收率的潜力也差距很大。通过综合分析,主要技术对不同类型油藏的提高收率潜力为:最小5%,中间值10%,最大值15%。

(3)利用石油公司提高收率模拟研究成果,建立了大型背斜油藏、复杂背斜油藏、断块油藏、岩性油藏、复杂储层油藏等在税后内部收益率为12%、油田开发到含水95%时聚合物驱和化学复合驱油时的油价与油田收率之间的关系,若这五类油藏要达到相同的收率,条件好的如大型背斜油藏、复杂背斜油藏所需的油价低于条件差的如岩性油藏、复杂储层油藏。

4.可系数取值标准的建立

在研究中,解剖了国内43个油藏、30个气藏,国外59个油藏、22个气藏,统计分析了大量油气田收率数据,给出了不同类型评价单元油气技术可系数和经济可系数取值范围,建立了不同类型评价单元油气可系数取值标准(表4-8、表4-9)。

(1)不同类型评价单元石油可系数相差较大,以技术可系数为例:中生代坳陷高渗和古近纪与新近纪断陷盆地复杂断块高渗评价单元可系数最大,其中间值大于40%;中生代坳陷中渗、古近纪与新近纪断陷盆地复杂断块中渗、中生代断陷、中新生代前陆、古生界潜山、古生界碎屑岩、古近纪残留型断陷、陆缘裂谷断陷古近纪与新近纪海相轻质油、陆缘弧后古近纪与新近纪海陆交互相轻质油等评价单元可系数为30%~40%;中生代坳陷低渗、古近纪与新近纪断陷盆地复杂断块低渗、古生界缝洞、南方古近纪与新近纪中小盆地、低渗碎屑岩、重(稠)油中高渗、变质岩、砾岩、陆内裂谷断陷新近纪重质油、陆内裂谷断陷古近纪复杂断块等评价单元可系数为20%~30%;低渗碳酸盐岩、重(稠)油低渗、火山岩等评价单元可系数为15%~20%。

(2)不同类型评价单元天然气可系数相差也较大:克拉通碳酸盐缝洞、礁滩和前陆冲断带等评价单元可系数最大,其平均值大于70%;克拉通古隆起、克拉通碎屑岩、前陆前渊、南方中小盆地、陆缘断陷、火山岩、变质岩和海域古近纪与新近纪砂岩等评价单元可系数为60%~70%;前陆斜坡、生物气、中生代坳陷、古近纪与新近纪断陷盆地复杂断块、残留断陷、砾岩等评价单元可系数为50%~60%;致密砂岩等评价单元可系数最小,其平均值小于50%。

5.可系数计算方法的建立

可系数计算方法包括可系数标准表法和刻度区类比法两种方法。

(1)标准表取值法。利用可系数标准表求取不同评价单元可系数的步骤如下:在不同类型评价单元可系数取值标准表中找到已知评价单元的所属类型;明确评价单元与可系数相关因素(宏观、微观)的定性、定量资料;对照可系数的类比评分标准表和类比评分计算方法,对评价单元进行类比打分;根据类比评价结果求取可系数。

(2)刻度区类比法。以建立的国内外刻度油气藏数据库为基础,利用刻度区类比法来求取不同评价单元的可系数。具体步骤如下:根据评价单元分类标准,将具体评价单元归类,并分析整理该评价单元的油气地质条件和开发条件;根据评价单元的类型及其地质条件和开发条件,从国内外刻度油气藏数据库选择适合的类比对象;对照可系数的类比评分标准表和类比评分计算方法,对该评价单元及其类比对象进行打分并计算它们的得分差值;根据得分差值求取该评价单元的可系数。

通过油气可系数标准和计算方法在全国129个盆地中的推广应用,既检验了可系数取值标准和所用基础数据的可靠性、可行性和适用性,保证了油气可量计算的客观性,又获得了全国油气可量。

“石油与天然气工程”下属的二级学科就业都如何?(硕士)

西安石油大学石油与天然气工程学科是西安石油大学下属的一个在职研究生学科,西安石油大学大学设有石油工程学院、地球科学与工程学院、电子工程学院、机械工程学院、材料科学与工程学院、计算机学院、化学化工学院、理学院、经济管理学院、人文学院、外国语学院、继续教育学院 ( 职业技术学院)、国际教育学院、思想政治理论教学科研部、音乐系、体育系16个院系部。西安石油大学石油与天然气工程学科研究生培养方案如下:

一、石油与天然气工程学科概况

“油气田开发工程”、“油气井工程”、“油气储运工程” 等学科分别于1990年、1994年和2001年获得硕士学位授权,2006年获得“石油与天然气工程”一级学科的硕士学位授权。2002年与2003年分别获得工程硕士与联合培养博士学位授权。在石油钻化学与环境保护、油气田开发与渗流理论及应用、油气井工程测量控制与信息应用技术、油气储输及安全技术等方面形成了鲜明特色。

本学科现有教授21人,副教授23人,博士学位教师38人。其中省“三秦学者”、“百人”和“教学名师”等6人,2007年被评为省级教学团队。本学科为陕西省重点学科,拥有国家、省部级重点实验室和工程中心等9个。“十一五”期间承担国家和省部级科研项目292项,科研经费共计1.1亿元。

二、石油与天然气工程培养目标

培养学生品行优良,具有良好的科学道德、敬业精神和合作精神;应掌握本学科坚实的基础理论和系统的专业知识,了解本学科发展趋势及技术研究前沿;能够运用专业知识、数学物理/化学方法、计算机技术等多种综合手段,分析和解决石油与天然气工程实践中存在的问题。具有从事科学研究工作或从事专门技术工作的能力。熟练掌握一门外语,具有实践能力、创新精神、国际视野与严谨求实的科学态度和作风。

三、石油与天然气工程培养年限

学习年限一般为3年,最长不超过4年。

四、二级学科及特色研究方向

本学科的二级学科包括:油气井工程、油气田开发工程、油气储运工程、海洋油气工程、非常规油气开发工程。

本学科形成了4个稳定的研究方向。

1. 石油钻化学与环境保护

本方向通过油气田开发工程、油气田应用化学与工程、环境化学与工程理论与技术交叉融合,进行化学作用机理研究及化学添加剂体系的开发与应用,为提高油气收率、保护储层与保护环境提供技术支撑。

2. 油气田开发与渗流理论及应用

本方向主要研究复杂油气藏油气渗流特征和物理/化学法油技术方法;建立油气田开发综合智能信息决策系统理论;将爆炸与燃烧、大功率电磁波等军工和高新技术应用于油气工程;研究物理(电磁、振动、高能气体)—化学耦合油增产新理论、新方法和新技术。

3. 油气井工程测量控制与信息应用技术

本方向主要研究油气井工程测量控制技术(特别是随钻测量和导向钻井控制技术);对油气井信息进行实时集、传输和处理,并与油气井测控技术相结合,实现油气井工程的动态监测、优化、控制以及提高决策与管理水平。

4. 油气储输及安全技术

本方向主要研究油气集输、储运工艺技术和完整性分析技术等。

五、课程设置、学时及学分规定

硕士研究生课程学习实行学分制,规定总学分(含实践环节)为32学分。课程结构设置为学位课、非学位课和必修环节。课程学习每18学时记1学分,学生必须修满32个学分。

六、培养方式与方法

1.研究生培养要德、智、体、美全面发展。政治理论学习应与思想政治教育相结合,积极参加公益劳动和体育活动。

2.研究生培养要理论联系实际,要深入掌握本学科专业的基础理论和专业知识,又要掌握教学、科研的方法,具备从事科学研究和独立担负专门技术工作的能力,要注意拓宽专业面。

3.在教学上,注重培养学生独立工作的能力,科学思维方法和创造性。教学的形式可以多样,应创造条件让研究生参加学术交流活动,了解本专业科技发展动向。

4.硕士研究生培养实行导师负责制。导师根据学位条例和培养方案,对每一位研究生制定出切实可行的培养。导师应教书育人,对研究生的政治思想、业务学习、工作科研等方面要定期检查,认真指导研究课题的进行。要注意培养研究生独立工作能力、创造能力和进取精神。

七、学位论文

论文工作是使研究生在科研方面受到较全面的基本训练,培养独立担负专门技术工作的能力。论文工作包括阅读文献、开题报告及撰写论文等。

1. 文献阅读和综述报告

在进入课题前,学生应查阅有关本研究方向和领域发展状况的国内外学术论文和技术报告,阅读数量不少于50篇(国外至少20篇),并完成一份综述报告(3000-5000字)。

2. 学位论文选题和开题报告

学位论文选题来源于应用课题或现实问题,有明确的职业背景和应用价值,并有一定的工作量。要能体现学生综合应用理论、方法和技术研究并解决工程技术问题或社会实践问题的能力。

开题报告选题应属于本学科范围。开题报告应该包括论文开题依据、研究内容、技术路径、创新点,以及论文完成拟提交的最终成果,由包括指导教师在内的论证小组给出评定意见。第五学期进行论文中期检查。

3. 学位论文质量要求

学位论文工作达到在开题中规定的目标,由学生独立完成。学位论文要求文句简练、通顺、图表清晰、数据可靠、撰写规范、严格准确地表达研究成果,实事求是地表述结论。

4. 学位论文评阅和答辩

需按照《西安石油大学硕士学位授予工作细则》执行。

考研政策不清晰?同等学力在职申硕有困惑?院校专业不好选?点击底部,有专业老师为你答疑解惑,211/985名校研究生硕士/博士开放网申报名中:s://.87dh/yjs2/

LBM方法应用于天然气水合物沉积物中水合物分解过程的多相渗流规律研究

你是要转专业吗?那会有些难度。因为学石油的话,要看你本科是不是学相关专业的,夸得太多,导师是不要的。你是黑龙江的,自然知道大庆石油学院了,这个我不用说了,你比我清楚。

西南石油当然也是很牛的学校,每年毕业生没毕业就被签走了,大部分去了东海,南海石油开地区,待遇很好,年薪十几万。着你肯定也清楚。不然怎么会想考石油。最好石油大学,不论是实力,还是地域都是其他两个学校没法比的。

下面说一下你问的那两个专业。

石 油 与 天 然 气 工 程 Petroleum and Natural Gas Engineering

石油与天然气工程是研究石油与天然气勘探、评估、开、油气分离、输送理论和技术的工程领域。其工程硕士学位授权单位培养从事石油与天然气生成环境、勘探、油气井工程设计、测井数据集和处理、油气田开、油气储运以及工程管理的高级技术人才。研修的主要课程有:政治理论课、外语课、工程数学、弹塑性力学、计算机应用技术、高等流体力学、高等渗流力学、油藏数值模拟、油田化学、收率原理、现代油气勘探技术、现代油气井工程、现代凿井工程、天然气工程、高等油藏工程、高等油工程、高等输油管道工程、高等输气管工程、油气田输系统、油气管道运行模拟、天然气液化技术、高等管理学基础、能源经济等。

一、概述

石油与天然气工程是一个运用科学的理论、方法、技术与装备高效地钻探地下油气、最大限度并经济有效地将地层中的油气开到地面,安全地将油气分离、计量与输运的工程技术领域。石油与天然气作为人类社会能源的重要组成部分,由于其不可替代性和自身的不可再生性,在世界经济的发展、人类社会生活与文明中占有极其重要的地位。由于石油与天然气存在着储层埋藏深,物性有低渗、超低渗,油品有稠油、超稠油,加之高压高温、地层非均质、井眼形成难等特点,给钻探与开发增加了很大的困难。目前,我国石油与天然气收率还比较低、地质条件复杂,深井与超深井钻探与开成本还比较高,因此是一项高投入、高风险、但效益明显的产业。在我国,2l世纪将是石油与天然气工程得以迅速发展的时代。

石油与天然气工程涉及工程力学、流体力学、油气地质、渗流物理、自控理论、计算机技术等基础和应用学科,需要解决的工程问题有钻井、完井、测试、油气藏开发地质、油气渗流规律、油气田开发方案与开技术、提高收率、油气矿场收集处理、长距离输送、储存与联网输配等工程问题。本工程领域与矿产普查与勘探、地球探测与信息技术、矿工程、工程力学、化学工程、机械工程、交通运输工程等学科相关。

二、培养目标

培养从事石油与天然气工程领域所属油气井工程、油气田开发工程、油气储运工程中科技攻关、技术开发、工程设计与施工、工程规划与管理的高层次人才。

石油与天然气工程领域工程硕士应具有本工程领域坚实的基础理论和宽广的专业知识及管理知识,掌握解决工程问题的先进方法和现代化技术手段,具有独立担负工程技术或工程管理工作的能力以及解决工程实际问题的能力,具有较好的综合素质和较强的创新能力和适应能力。掌握一门外语,能较熟练地使用计算机。

三、领域范围

领域范围有以下几个方面。

油气井工程:油气井工程力学,油气井工作液的化学和力学,油气井工程测量与过程控制,油气井测井数据集、处理与解释。

油气田开发工程:油气藏描述及开发地质建模的理论与方法,渗流理论和油气藏数值模拟,油气田开发理论与方法,油气工程理论与技术,提高收率理论与技术,油气化学工程与理论。

油气储运工程:油气长距离管输技术,多相管流及油气田集输和油气处理技术,油气储运及营销系统优化,油气管道和储罐的强度研究,油气储运设施施工及安全、防腐技术。

石油与天然气工程管理。

四、课程设置

基础课:科学社会主义理论、自然辩证法、外语、工程数学、应用弹塑性力学、计算机应用基础、技术经济学等。

技术基础课:高等流体力学、高等渗流力学、油藏数值模拟、油田化学、提高收率原理、渗流物理、油气藏经营管理、运筹学等。

专业课:现代油气井工程、现代完井工程、天然气工程、高等油藏工程、高等油工程、高等输油管道工程、高等输气管道工程、油气田集输系统、油气管道运行模拟、项目管理、能源经济学等。

上述课程可定为学位课程和非学位课程。此外,还可以由培养单位与合作企业根据实际需要确定其他课程。课程学学分不少于28学分。

五、学位论文

论文选题应直接来源于生产实际或者具有明确的生产背景和应用价值,或者是一个完整的工程技术项目的设计或研究课题,或者是技术攻关、技术改造专题,或者是新工艺、新设备、新材料、新产品的研制与开发,也可以是工程管理课题。选题要求有难度、有新意、有足够的工作量。

对于技术攻关的成果,应有与国内外同类理论、方法与技术的对析;对于新工具、新工艺设计与开发的技术成果,论文应具有设计方案的比较、评估、参数计算模型与结果、完整的图纸;对于重大工程项目管理的成果,必须给出项目的系统组成、目标分析、风险与效益分析、与管理方案及措施、收益与创新管理方法。://.wszsw

一、石油工程计算技术

“石油工程计算技术”是我校“石油与天然气工程”一级学科下自主设置的二级学科,具有博士和硕士学位授予权,主要包含以下研究方向:

1、石油工程仿真模拟计算

(i) 油气井工程中的计算与仿真; (ii) 油气藏渗流模拟与仿真;

(iii) 油气井生产过程动态模拟与仿真; (iv) 储运与集输过程的计算及仿真。

2、油气田开发系统信息分析与处理

(i) 动态数据处理与数据挖掘 ; (ii) 油气田数据库及管理信息系统;

(iii) 系统模式识别与系统辨识; (iv) 油气田开发软件开发与集成技术。

3、 石油工程数值计算

(i) 微分方程数值解 ;(ii) 优化计算方法;

(iii) 数值代数方法; (iv) 并行计算技术

可以说这个专业就是计算机专业,只不过把计算机应用在了石油工程上面,一般搞计算机的人都可以搞这个,所以,竞争力很强。不建议考。以上是个人看法,仅供参考。

喻西崇1,刘瑜2,宋永臣2,李清平1,庞维新1,白玉湖1

喻西崇(13-),男,博士,高级工程师,主要从事深水工程、天然气水合物等研究,E-m ail: yuxch@cnooc.cn。

注:本文曾发表于中国石油大学学报(自然科学版),2011年第5期,本次出版有修改。

1.中海油研究总院,北京 100027

2.大连理工大学,辽宁,大连 116024

摘要:沉积物中天然气水合物的分解过程实际上是固态水合物在沉积物中吸收热量分解后发生相变的动态过程。在动态分解过程中,会发生复杂的多相渗流、传热和传质过程。掌握水合物分解过程中的多相渗流、传热和传质规律,是天然气水合物开技术的理论基础,对水合物开方法的选择、水合物开策略的制订及其对环境危害的研究等都具有非常的意义。本文根据沉积物中水合物分解过程中流体运移和孔隙介质的特点,在充分调研的基础上提出格子Boltzmann方法(LBM)应用于天然气水合物沉积物中多相渗流规律的新方法,该方法是介于宏观和微观之间的介观模型方法。并用由简单到复杂的方法:首先开展了LBM 方法应用于复杂微通道内单相、多相流动的数值模拟分析研究,然后在此基础上开展了LBM方法应用于多孔介质中单相流动的数值模拟分析研究;通过模拟得到复杂微通道内流场分布取决于微通道粗糙程度、弯曲程度、表面润湿性、流体介质特性等,多孔介质中单相流动的流场分布与孔隙直径(饱和度)和渗透率有关,沉积物中水合物的生成使得多孔介质渗透率大大降低。

关键词:LBM 方法;天然气水合物;沉积物;多相渗流

Preliminary Study for LBM Application to Multiphase flow Characteristics in Porous Media with gas Hydrate

Yu Xichong1,Liuyu2,Song Yongchen2,Li Qingping1,Pang Weixin1,Bai Y uhu1

1.CNOOC Research Institute,Beijing 100027,China

2.Dalian University of Technology,Dalian 116024,Liaoning,China

Abstract:Sediment decomposition of gas hydrate is actually solid hydrate in the sediments absorb heat decomposed the dynamic process of phase transition,dynamic decomposition process occurs complex multiphase flow,heat and mass transfer process ;Multiphase flow,heat and mass transfer process during gas hydrate decomposition,is the basic theory of gas hydrate production technology,and plan choices strategies of gas hydrate production,and great significance with on environmental hazards for gas hydrate decomposition.In this paper,simple to complex methods is adopted.Firstly,LBM method is lied to carry out a complex micro-channel single-phase,multiphase flow simulation analysis,then LBM method is again lied to single-phase flow in porous media numerical simulation studies.The results show that complex micro-channel flow field depends on the micro-channel roughness,bending degree,surface wet ability,fluid properties and other media.Single-phase flow in porous media depends on the pore diameter (saturation) and permeability of the sediment and the hydrate formation in the sediment so greatly reduces the permeability of porous media.

Key word:LBM method;gas hydrate;porous media; multiphase flow

0 引言

天然气水合物的开过程实际上是固态水合物在沉积物中吸收热量分解后发生相变的过程。首先,水合物分解是一个非常复杂的动态过程,分解过程会对沉积物储层的岩石特性和热力学参数产生重要的影响;其中储层岩石特性参数主要包括储层机械特性(如剪切弹性模量、杨氏模量、泊松比等)和储层岩石渗流参数(如孔隙度、渗透率、饱和度、毛管力等),热力学参数主要包括比热、导热系数和膨胀系数、分解热等。其次,水合物分解是一个非常复杂的相态变化过程;如固态水合物分解成水和气,水还可能再次形成冰,冰遇热还可能再次融化,融化后的水遇到天然气在适当条件下还可能再次生成水合物等。同时,水合物分解是一个吸热过程,水合物分解过程中会出现多相渗流(天然气、水合物、水、冰和砂等)、传热(热传导、对流、流体流动、水合物分解热、节流效应等)和传质(水合物的分解、流体流动、水合物二次形成、气体溶解和吸附、气泡成核和增长等)等过程。因此掌握水合物分解过程中基础物性参数和相态的变化规律以及水合物分解过程中的多相渗流、传热和传质规律,是天然气水合物开技术的理论基础,对水合物开方法的选择、水合物开策略的制订及其对环境危害的研究等都具有非常重要的意义。其中,掌握沉积物中天然气水合物分解过程中多相渗流规律是研究的基础,直接决定着传热和传质的方式和效率,也直接决定着今后制定水合物开发方案和开效率,因此开展天然气水合物分解过程中多相渗流的理论研究和定量描述沉积中水合物分解过程的多相渗流规律非常重要。沉积物中天然气水合物分解过程中多相渗流实际上是一种动态的流固耦合过程,是一种多学科交叉的科学问题,涉及流体力学、固体力学、传热学和热力学以及统计学等学科。目前,还没有商业软件专门用于沉积物中水合物生成和分解过程中多相渗流、传热和传质模拟软件,这方面的研究相对不成熟,目前还处在探索和试验阶段,因此本文试图对沉积物中水合物分解过程中多相渗流模拟方法进行深入研究,力图在理论研究方法上有所突破。

对于流动特性的模型计算研究按照不同尺度可以分为微观、介观和宏观3个尺度。对于宏观尺度的模型计算研究主要是根据质量、能量和动量守恒方程用有限元素的方法进行建模和计算,如一些商用CFD软件等。对于微观尺度的模型研究主要是应用分子动力学(MD)、直接蒙特卡洛模拟(DMS)等方法。而基于分子团的介观尺度上目前最流行的方法就是格子Boltzmann方法(LBM)。为了研究水合物分解过程的渗流特性中机理性的问题,用宏观尺度的建模计算方法是不恰当的,许多微观的机理性的问题无法应用宏观尺度的模型解释清楚。因此拟用微观和介观2个尺度的建模方法,即微观尺度上的MD法和介观尺度上的LBM 方法结合MRI方法得到的多孔岩心孔隙特性进行模型建立和数值模拟,对水合物分解过程的渗流特性进行模拟计算研究。

1 LBM方法在多相渗流模拟中的应用调研分析

1988年,Mc Namara和Zanetti[1]提出把格子气自动机中的整数运算变成实数运算,标志着格子Boltzmann方法的诞生。经过了近20a发展的格子Boltzmann方法为解决多相多组分流动问题提供了一个新的途径。

格子理论的提出基于这样的事实:流体的宏观运动是由大量流体分子微观运动的统计平均结果,单个分子的运动细节并不影响宏观运动的特性。因此,可以构造一种人工微观模型,使其在保持真实流体的基本特征前提下,结构尽可能的简单,粒子运动的细节尽可能的简化,且其宏观统计特性符合客观运动规律。

格子Boltzmann方法求解的方程是基于微观尺度上的统计力学的Boltzmann方程,但不需要解完整的Boltzmann方程。它有一些独特的优点:算法简单、能处理复杂边界、格子Bo1tzmann具有很高的并行性、微观和宏观方程之间的转换相对容易等。多相多组分的格子Bo1tzmann方法发展至此,主要有颜色模型和Shan-Chen模型。这2种模型分别从不同的角度描述流体内各组分间的相互作用。本文总结了颜色模型和Shan-Chen模型的发展、2种模型的特点及它们在二元非混相流体流动研究中的应用。

Rothman和Keller[2]提出了第一个模拟非混相两相流动的格子气自动机模型。这一模型以单相FHP模型为基础,引入2种有色粒子:红色和蓝色表示2种流体。此模型的提出是格子气自动机模拟两相流工作的突破性进步,但是它依然存在噪声及其他格子气自动机的缺点。之后,Gunstensen等[3]在R-K模型的基础上结合Mc Namara和Zanetti的模型和由Higuera、Jimenez[4]提出的线性化碰撞算子而提出一个新的模型。这一模型成功克服了原模型不满足伽利略不变性及含噪音的非物理性缺点,但压力仍然依赖于速度。此外还有线性化算子不能得到有效计算,模型不能处理不同密度和黏度的2种流体。

Grunau[5]等进一步发展了这一模型:用单弛豫时间碰撞算子简化了碰撞算子的计算并且选用了合适的粒子平衡态分布函数,并允许不同颜色粒子发生碰撞。改进后的模型在不可压条件下,可以得到宏观Nier-Stokes方程,能够模拟不同密度、不同黏度的两相流。

1993年Shan和Chen[6]提出了一种新的多相多组分格子Boltzmann模型。这一模型的最大特点是提出了直接描述分子间相互作用的方法,用一种伪势描述分子间的相互作用。1994年Shan和Doolen[7]又对模型进行了改进。模型的改进之处在于:①重新定义了平衡速度计算式中的uk项使碰撞在无相间相互作用力时满足动量守恒。②重新定义了混合流体的速度,将原来的按碰撞前状态计算改为按碰撞前后的平均值计算。如此则大大降低了宏观方程的误差。综合已有文献来看,颜色模型不如Shan-Chen模型应用广泛。

M.Krafczyk[8]用颜色模型模拟了多孔介质内的二元流动。在Gunstensen模型基础上建立了三维十九位格子上的颜色模型,模拟不同黏度及密度比的非混相二元流。这一模型通过以下几种两相模拟来验证:两流体间的静态平坦界面,非混相二元流在平行通道内流动,Laplace定律,气泡运动。模拟结果与半解析解一致。对2个大尺度的实际问题给出了初步模拟结果。2个问题为:废水批反应器内空气-水混合物的流动和泥流中的饱和滞后影响。对多孔介质内非混相二元流的实际问题模拟得到了量化结果。但同时可以发现对于这样大尺度实际问题的模拟,模型的稳定性成为一个主要的限制。

T Reis和T N Phillips[9]在原有的Gunstensen模型基础上提出一种新的颜色模型。这一模型构造了碰撞算子中两相相互作用部分,由此模拟出适宜的界面张力并且确定了界面张力的理论表达式。这一模型的可用性从两方面来验证:①比较界面张力的数值模拟结果与理论预测结果;②预测Laplace定律及非混相层状Poiseuille流。然后研究了不同黏度相同密度的2种流体的旋节线分离。最后模拟了2个气泡的合并过程,说明这一模型可以用来模拟密度比较大的两相流。

用于模拟多相多组分流的Shan-Chen模型和颜色模型近些年得到了很大地发展。由这2种模型都可以得到宏观上的Nier-Stokes方程,这是模型可用的最基本条件。Shan-Chen模型的最大特点是引入了直接刻画粒子间相互作用的势,它反映了多相多组分流的物理本质,易于理解。此外它在模拟时计算简单,得到广泛应用。它既可以模拟单组分流体的相变,也可以模拟多组分非混相流动,在模型上对组分数没有限制。颜色模型的提出比Shan-Chen模型早,特点是引入颜色梯度概念和颜色重标过程。它的提出为格子Boltzmann方法模拟多相多组分流带来突破性进展。2种模型在模拟简单的两相流(层状Poiseuille流、静态气泡)都可以得到与理论解吻合较好的结果(这是对模型可用性的验证),并在复杂流动的基础性研究中得到一定程度地应用。但2个模型都存在缺陷:如Shan-Chen模型中,只有相互作用力中的密度函数取指数形式 时,该模型才与热力学相关理论一致;用颜色模型模拟,重新标色过程的计算成本高,而且模拟产生的伪流速度大、范围广,结果误差大;两模型模拟多相流动时相界面都有一定的厚度,这对用格子Boltzmann方法研究一些问题形成障碍。因此各种模型仍需改进发展。

2 LBM 方法应用于复杂微通道内单相、多相流动数值模拟分析

当多孔介质中的孔隙尺度很小时,微尺度效应不能忽略。利用LBM 方法考察了复杂微通道内的单相和多相流动特性。

2.1 单相流体在带粗糙元的直微通道内的流动

模拟结果如图1和2所示。从图中可以得知带矩形粗糙元和三角形粗糙元的微通道,除了在近粗糙元区域,流体流场大致相同。在带有矩形粗糙元的壁面附近,形成了一些漩涡,而且,这些漩涡的位置、大小形状和粗糙元的几何形状有着密切的关系。在三角形粗糙元的壁面附近,流场产生明显扭曲现象。

图1 矩形粗糙元复杂通道的流场a,局部放大图b

图2 三角形粗糙元复杂通道的流场(a),局部放大图(b)

2.2 单相流体在带粗糙元的弯曲通道内的流动

图3 带粗糙元的弯曲微通道

带粗糙元的弯曲微通道如图3所示,弯曲通道的流场如图4所示。从中可以得知,在弯曲通道内的折弯处,产生一些漩涡,这些漩涡的数量、大小、形状和弯曲通道的几何形状以及粗糙元的形状有着密切关系。这些漩涡在很大程度上影响着整个流场。因此,在研究弯曲微通道的流动时,通道和粗糙元的几何形状不能被忽视。

2.3 气液两相流体在光滑直通道内的流动

本文用Shan-Chen两相模型模拟了水滴在光滑直通道内的流体特性。在Shan-Chen模型中,壁面的表面润湿性由无量纲系数Gt来调节,不同的G1值,得到的表面润湿性也不同。选取8个不同的Gt值(0.4,0.35,0.3,0.25,0.2,0.15,0.1,0.02)进行模拟,表征表面的润湿特性。模拟结果列于表1中。从表中可知,Gt=0.4与0.35,水滴表面上的接触角小于90°,通道上下壁面为亲水表面;Gt=0.3,0.25与0.2时,水滴的水平表面上的接触角在90°~150°,表面为疏水表面;Gt=0.15,0.1与0.02时,水滴在表面上的接触角超过150°,为超疏水表面,其中,Gt=0.02时,接触角为180°的理想超疏水表面,实际中不存在这样的表面。

表1 表面润湿性与G,的关系

模拟结果显示,表面的浸润特性对流动的影响很大。图5给出了Gt=0.4和0.02时,流动相界面分布情况,其中,深蓝色为气体,红色为液体。从图中可以看到,在亲水表面(Gt=0.4)通道内,液体会吸附在表面上。而在超疏水(Gt=0.02)通道内,液体与壁面之间存在一个微小的空隙,即液体与壁面之间存在一个微薄的空气层。

图4 弯曲微通道的流场(a),局部放大图(b),(c)

图5 不同浸润特性光滑表面流动相界面分布(t=600计算步长)

2.4 气液两相流体在粗糙直通道内的流动

笔者用规则的矩形凸起与凹槽来近似代表超疏水表面的粗糙元,结构如图6所示,其中浅蓝色矩形区域为均匀分布的粗糙元。取w=s=5 μm,h=10μm进行模拟计算。

图6 矩形粗糙元粗糙壁面直通道流动计算域

图7 不同浸润特性粗糙表面流动相界面分布(稳定状态)

图7给出了流动达到稳定状态时,不同浸润性通道内流体相界面分布。图中,深蓝色代表气体,浅蓝色代表固体粗糙元,红色代表液体。亲水表面(Gt=0.4)通道内的流动,液体充满粗糙元凹槽内部,如图7a所示;随着Gt值的减小,即通道表面的疏水性能逐渐增强,液体在流动过程中进入凹槽内部的液体也越来越少,气体填充在凹槽底部,形成气团,如图7b-d所示。当Gt=0.02时,液体并不进入凹槽内部,从凹槽顶部横掠而过,如图7e。

图8是Gt=0.02时,通道内局部的流线图。通道中心区域是液体的流动,凹槽内部为气团的运动,中心区域液体的流动驱使凹槽内部气团开始运动,并形成涡旋,漩涡的上部运动方向与液体流速相同。

图8 粗糙表面流动流线局部放大图(Gt=0.02)

图9 不同Gt粗糙表面流动接触线局部放大图

图9给出了不同壁面特性粗糙表面流动接触线的局部放大图,流体最前端在x方向的移动距离均为195格子。与光滑表面相比,粗糙表面对亲水表面和疏水表面上部的流动都有很大的影响,但是粗糙元的存在对理想的超疏水表面(Gt=0.02)上部的流动影响并不大,与光滑表面相比,流体接触线几乎没有什么变化。这是因为,流体在绝对理想的超水表面上流动时,流体完全脱离固体表面。

3 LBM 方法应用于多孔介质中单相流动数值模拟分析

3.1 水合物在单孔隙通道内的格子Boltzmann模拟

应用上述模型对多孔介质中的水合物生成、分解过程饱和度的变化影响多孔介质渗透率的特性进行了模拟。在300×300格子的计算域内, 4个角点分别为半径R=100的1/4圆形多孔介质骨架(红色),骨架中心形成多孔介质的孔隙空间。水合物在孔隙中心生成(绿色),为理想的圆形,水合物认为是固体。半径从0到100变化,从而模拟水合物的生长。骨架颗粒表面和水合物颗粒表面都是非亲水表面,与水之间的相间力系数Gw=0.1。如图10所示。

图10 水合物在单孔隙通道内的格子Boltzmann模拟

根据水合物的生长半径可以计算出孔隙度变化及单孔隙内水合物的饱和度SH。左右边界定义为压力边界,模拟黏度为1的流体从左向右流动。得到该计算域内流体的流量后,根据西定律可以计算出该计算单元内的渗透率变化:

南海天然气水合物富集规律与开基础研究专集

设水合物半径R=0时的渗透率为K0=1,有水合物存在情况下的渗透率为KSH,相对渗透率定义为k=KsH/K0。计算结果如图11所示,从图中看出含有水合物的多孔介质渗透率随着水合物的饱和度增大而急剧降低呈指数递减关系。

不同水合物半径下的流线图如图12所示。当有水合物生成时,流体的流道迂曲度增大,流体在孔隙中流动形成绕流,降低了多孔介质的流通性能,从而使渗透率下降。当水合物的半径与孔隙尺寸相当时,水合物与多孔介质骨架间仅仅留下狭窄的流动通道,渗透率几乎降低为0。

图11 相对渗透率与水合物饱和度的关系

图12 不同水合物半径下的流线图

3.2 水合物在多孔隙通道内的格子Boltzmann模拟

图13表示在250×250格子的计算域内,红色为半径等于25的多孔介质骨架颗粒,绿色为在孔隙空间中均匀生成的水合物,半径分别为R=0,5,10,15,20和25。白色线为流体在孔隙通道中的流线。

水合物饱和度与相对渗透率之间的关系如图14所示。曲线为Kozeny颗粒模型水合物占据孔隙中心时相对渗透率与饱和度之间的关系。Kozeny颗粒模型表示为

图13 多孔隙空间水合物生成过程的流线图

图14 格子Boltzmann模拟结果与经验模型的关系

南海天然气水合物富集规律与开基础研究专集

在忽略毛细力作用设下,水合物饱和度在[0.1,1]范围内n值取[0.4,1]。

从图14中可以看出,格子Boltzmann数值模拟得到的结果与Kozeny颗粒模型吻合较好。充分证明格子Boltzmann数值模拟是可行的,为下一步以此为基础开展复杂多孔介质中水合物饱和度与相对渗透率相关关系奠定基础。

4 结论和建议

沉积物中天然气水合物分解过程中多相渗流实际上是一种动态的流固耦合过程,是一种多学科交叉的科学问题,涉及流体力学、固体力学、传热学和热力学以及统计学等学科。目前,还没有商业软件专门用于沉积物中水合物生成和分解过程中多相渗流、传热和传质模拟软件,这方面的研究相对不成熟,还处在探索和试验阶段,因此本文试图对沉积物中水合物分解过程中多相渗流模拟方法进行深入研究,力图在理论研究方法上有所突破。

1)根据沉积物中水合物分解过程中流体运移和孔隙介质的特点,在充分调研的基础上提出了格子Boltzmann方法(LBM)应用于天然气水合物沉积物中多相渗流规律的新方法,该方法是介于宏观和微观之间的介观模型方法。

2)用由简单到复杂的方法开展沉积物中水合物分解过程中多相流动规律研究。首先开展了LBM 方法应用于复杂微通道内单相、多相流动的数值模拟分析研究,然后在此基础上开展了LBM方法应用于多孔介质中单相流动的数值模拟分析研究;通过模拟得到复杂微通道内流场分布取决于微通道粗糙程度、弯曲程度、表面润湿性、流体介质特性等,多孔介质中单相流动的流场分布与孔隙直径(饱和度)和渗透率有关,沉积物中水合物的生成使得多孔介质渗透率大大降低。

3)通过使用LBM 方法应用于单孔隙和多孔隙通道内单相流动数值模拟分析,同时与现有关系式计算结果一致,充分证明格子Boltzmann数值模拟是可行的,为下一步以此为基础开展复杂多孔介质中水合物饱和度与相对渗透率相关关系奠定基础。

4)本文只是将LBM 方法应用于多孔介质中多相流动规律的初步研究,今后还需要结合沉积物中天然气水合物分布的具体特点,考虑孔隙介质的微观特性、多相介质的流体物性以及流体介质与孔隙介质之间相互作用力等因素,同时还考虑水合物生成和分解的动态特性,结合传热和传质的特点,深入开展沉积物中水合物分解过程中多相流动规律,并与实验相结合,全面了解沉积物中水合物分解过程中多相流动规律。

参考文献

[1]McNamara G,Zanetti G.Using the Lattice Boltzmann Equation to Simulate Lattice Gas Automata”,Physical Review Leters[J].1988,61(20).

[2]Rothman D,Keller J.A Particle Basis for an Immiscible Latice-Gas Model,Physical Review Letters[J].1988,156(56).

[3]Gunsterser A,Rothman D.Lattice Boltzman Model for Immiscible Fluids,Physical Review Leters[J].1991,148(43).

[4]Higuera G,Jimenez D.Lattice Boltzman Model in Porous Media[J].Nuclear Energy,1999,146(31).

[5]Grunau C,Rothman D.Diffusion in Lattice Boltzman Model[J].Physical Review Letters[J].2000,92(11).

[6]Shan Xiaowen,Chen Hudong,Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components[J].Phys.,1993,47(1):1815-1819.

[7]Shan X,Doolen G.Multi-Component Lattice-Boltzmann Model with Inter-Particle[C].New York:Physicochemical Hydrodynamics:[C],1994.

[8]Krafczyk M.Comparison of a Lattice-Boltzmann Model,A Full-Morphology Model,and a Pore Network Model for Determining Capillary Pressure-Saturation Relationships[J].Published in Vadose Zone,2005:380-388.

[9]Reis T.Phillips T N.Lattice Boltzmann Model for Simulating Immiscible Two-Phase Flows[J].Journal of Phys A:Math Theory 2007,40:4033-4053.