油气田动态分析的理解_天然气动态分析报告是什么内容是什么指标
1.什么是能耗监测系统?
2.“智慧哨兵”油气管道智能实时监测系统有什么优势?
3.耗能工质的能源统计的主要内容
4.典型地区环境地质指标研究
5.矿场油气集输是什么?
6.车用压缩天然气 气质检测间隔时间是多少
7.燃气工程项目申请报告
①张国华等.1998,石油和天然气勘探地质评价规范,北京,中国海洋石油总公司。
勘探目标评价和风险分析方法是石油公司的核心技术之一。自1998年中国海油建立了《石油和天然气勘探地质评价规范》以来,对石油和天然气勘探全过程中的地质评价,尤以其中包括的勘探目标评价和勘探风险分析工作起到了促进作用,是使勘探管理工作与国际接轨的重要技术环节。勘探目标评价与勘探风险分析浸透了商业性理念和相关的评价技术,近期集束勘探方法的产生和更进一步的价值勘探的提出,就是执行这一规范的直接成果。
一、石油和天然气勘探地质评价
油气储量的增长是任何一个油公司生存、发展的根本所在,世界上的各大油气公司,无一不将油气勘探工作放在首位,并把油气风险勘探视为一种商业经营活动,力求勘探工作优质高效,即用有限的资金投入而能获得更多的、有商业开采价值的油气储量。
图5-32 油气勘探地质评价程序
中国海油一直在探索一套具有自己特点的油气勘探工作和管理模式,用以具体指导海上油气勘探工作。在总结勘探经验和吸取国外油公司管理经验的基础上,按照勘探工作要革新管理、优化结构、科技进步的指导方针,于1998年编制成此《规范》。它规定了中国海油在石油和天然气勘探全过程中的地质评价阶段及各阶段地质评价的目的、任务、程序、内容以及应采用的技术、标准和应采用的成果和要求。它适用于中国海油所进行的油气勘探活动中的地质评价工作。
一般而言,石油和天然气勘探地质评价的全过程,系指从某一特定区域的石油地质调查开始,到提交石油(或)和天然气探明储量为止的勘探活动中的地质评价工作。根据油气勘探活动的阶段性和地质评价的目的、任务,又将地质评价全过程进一步划分为区域评价、目标评价和油气藏评价三大阶段,具体阶段划分和工作程序见图5-32,各阶段的具体含义如下。
a.区域评价阶段:即从某一特定的地理区域(可以是盆地、坳陷、凹陷或其中的某一部分)的勘探环境和石油地质调查开始,到决定是否谋求区块油气探矿权为止的地质评价工作全过程。很明显,区域评价阶段的主要目的,在于谋求获得石油和天然气探矿权。
b.目标评价阶段:即从获得区块的油气探矿权后进行勘探目标优选开始,到预探目标钻后地质评价完成为止的地质评价工作全过程。当然,目标评价的主要目的,在于发现商业性油气藏。
c.油气藏评价阶段:即从预探目标的油气藏评价方案开始实施,到提交探明储量为止的地质评价工作全过程。油气藏评价阶段的主要目的,在于落实可供开发的石油和天然气探明储量。
二、区域评价
区域评价一般按资料准备、区域地质特征分析、含油气系统分析和勘探区块选择4个阶段循序进行(图5-33)。四个阶段的具体内容如下。
图5—33 区域评价程序
a.资料准备:为区域评价收集、提供有关投资环境、区域地质背景和各项有关的基础资料。
b.区域地质特征分析:阐明评价区的构造、沉积特点及其发育演化史。
c.含油气系统分析:确定评价区含油气系统及其油气资源潜力。
d.勘探区块选择:确定有经济开发前景的油气聚集区块,并谋求其油气探矿权。
在评价内容中,主要包括了资料准备,具体为各种资料收集、基础资料的补充和完善、建立区域评价数据库工作;区域地质特征分析,包括区域地层格架的建立、地震资料连片解释、沉积体系及岩相分析、表层构造和断裂体系分析、基底结构和盆地演化特点分析工作;含油气系统分析包括烃源识别、储、盖层特征及时空分布、盆地模拟分析、含油气系统描述等工作;勘探区块选择包括成藏区带评价、有利区块选择、谋求油气探矿权的建议等内容。
评价要求作到成藏区带评价;油气成藏模式预测;潜在资源量预测;区带勘探风险分析和工程经济概念设计和评价。
最终提交的主要成果包括文字报告的7项内容、27种附图、8类附表及相关专题研究附件。
三、目标评价
目标评价一般按资料准备、勘探目标优选、预探目标钻前评价、预探井随钻分析和预探目标钻后评价5个阶段循序进行(图5-34)。在勘探程度较高的地区,勘探目标优选和预探目标钻前评价可以同步进行;在已知油气成藏区带内则当以圈闭的落实和预探目标钻前评价为重点。
5个阶段主要内容如下。
a.资料准备:为目标评价提供必要的地质背景资料和基础资料。
b.勘探目标优选:优选可供预探的有利含油气圈闭。
c.预探目标钻前评价:提交有经济性开发效益前景的钻探目标及预探井位。
d.预探井随钻分析:发现油气藏及取得必要的地质资料。
e.预探目标钻后评价:对预探目标的石油地质特征进行再认识和总结勘探经验教训,并提交获油气流圈闭的预测储量及进一步评价的方案。
评价内容主要包括资料准备,具体为资料收集、地震资料采集和处理、建立目标评价数据库;勘探目标优选包括查明和落实各类圈闭、圈闭的油气成藏条件分析、圈闭的潜在资源量计算、预探目标优选;预探目标钻前评价包括圈闭精细描述、圈闭的油气藏模式预测、圈闭的潜在资源量复算、圈闭的地质风险分析、圈闭的工程经济概念设计和评价、预探井位部署建议、预探井钻井地质设计;预探井随钻分析包括跟踪了解钻井动态、随钻地层分析和对比、随钻油气水分析、钻井设计调整和测试层位建议等;预探目标钻后评价包括预探井钻后基础资料整理和分析、圈闭石油地质再评价、油气藏早期评价等项内容。
其中,十分重要的是要求对预探目标做到:圈闭精细描述、圈闭的油气藏模式预测、圈闭潜在资源量计算、圈闭地质风险分析、圈闭的工程经济概念设计与评价、预探井位部署建议和预探井钻井地质设计。
要求预探目标钻后评价做到:圈闭的石油地质再评价、油气藏早期评价、预测储量计算、油气藏开发早期工程经济评价和油气藏评价方案建议。
最后要提交预探目标评价报告,内容有预探目标评价及评价井钻探方案文字报告8项内容、附图16种、附表5类。预探目标钻后评价内容包括文字报告5项内容、附图15种、附表14类。
图5-34 目标评价程序
四、油气藏评价
油气藏评价按资料准备、油气藏跟踪评价和探明储量计算3个阶段实施(图5-35)。油气藏评价应是滚动进行的,随着勘探程度的提高和资料的积累,从宏观的油气层分布范围和规模等框架描述到微观的油气储集空间分布和体积等的精细描述,不断提高精度。
图5-35 油气藏评价程序
3个阶段的主要内容如下。
a.资料准备:为油气藏评价提供必要的地质背景资料、基础资料和各种条件。
b.油气藏跟踪评价:探明获油气流圈闭的油气层分布范围、规模和产能。
c.探明储量计算:提交可供商业开采的石油和天然气探明储量。
主要评价内容为资料准备包括资料收集、建立油气藏评价数据库;油气藏跟踪评价包括评价井钻井地质设计、评价井随钻分析、评价井完钻跟踪评价、评价方案调整建议、油气藏终止评价报告;探明储量计算包括油气藏结构、储层性质、储层参数、油气藏特征、油气藏静态模型描述、油气藏模式研究、探明储量计算及评价、开发方案概念设计、采收率研究、工程经济评价、探明储量报告的编写等。
需要注意的是,工程经济评价要包括勘探和开发工程参数,勘探和开发投资额操作费估算,经济模式和财务参数的选取,内部盈利率、投资回收期、净观值和利润投资比等指标的计算,敏感性和风险分析等内容。
最后应提交油藏终止评价报告和探明储量报告。
油藏终止评价报告包括文字报告6项内容、附图17种、附表23类。
探明储量报告按国家矿产储量委员会的储量规范和储量报告图表格式要求完成。
五、地质风险分析方法
勘探风险分析是石油公司勘探投资决策的重要参数,如前所述,勘探工作地质评价各个阶段都要进行风险分析。当然投资决策并不完全取决于地质风险的高低,还取决于石油公司的资金实力和承受风险的能力,但地质风险毕竟是投资决策中不可稀缺的基本参数。
根据多年勘探实践,并参考外国油公司风险分析经验和方法,我们确立了以地质条件存在概率为核心的地质风险分析方法。
本方法适用于中国海油油气勘探中预测圈闭的钻前评价分析,也可以用于对盆地或凹陷进行资源量预测时的地质风险分析。
此法的目的在于通过对形成油气藏基本石油地质条件存在的可能性分析,预测或估计目标圈闭的地质成功概率,为勘探目标经济评价和勘探决策提供依据。
一般而言,风险(Risk)通常解释为失败的可能性。油气勘探过程中的风险主要包括地质风险、技术风险、商业风险和政治风险等。地质风险(Geological Risk)指勘探者对勘探目标基本石油地质条件认识不足而导致勘探失败的可能性。而地质成功概率(Probability of Geological Success)或称地质把握系数,是预计目标的圈闭经钻探获得商业性油气发现的概率。地质风险分析(Geological Risk Ana1ysis)则是用概率统计学原理和圈闭评价方法,研究并量化形成油气藏的基本石油地质条件存在的可能性,预测目标圈闭的地质成功概率。
(一)地质风险分析方法
预测地质成功概率的方法有地质条件概率法、历史经验统计法和类比法等多种方法。这里采用地质条件概率法,当然,也可以根据具体情况使用多种方法进行比较和互相印正。
1.地质条件概率法的基本依据
a.油气藏的形成需要同时具备烃源、圈闭、储层、盖层和运聚匹配等基本石油地质条件,缺一不可;
b.各项地质条件必须满足彼此互相独立的假设;
c.各项地质条件存在概率之积即为该目标圈闭的地质成功概率。
2.地质条件存在概率的取值原则
a.各项地质条件存在概率的求取有多种方法,本规范采取由已知与未知的联系来判断未知的原则,并强调占有资料的类别和可靠程度对分析结果的影响。
b.正确分析各项石油地质条件存在概率和资料的可靠程度是测算目标圈闭的地质成功概率的关键。要求必须掌握本区的石油地质条件和资料状况在目标评价总和研究的基础上进行地质风险分析和取值。
c.由于不同地区地质条件千差万别,使用者也可以根据各盆地的实际情况对取标准作适当调整和修改,但应予以说明。
(二)地质风险分析程序
首先对基本石油地质条件进行分析,确定或估计其存在概率;然后计算单层或多层圈闭的地质成功概率。
1.基本石油地质条件分析
a.烃源条件:①根据同盆地、同凹陷或同构造带内油气田分布情况,已钻探圈闭或井的含油气情况,油气苗和其他油气显示情况(地球物理烃类检测、化探、摇感等),确定是否存在成熟的烃源条件;②烃源岩的体积;③烃源岩中有机质的数量和质量;④烃源岩中有机质的成熟度;⑤资料类型和证实成度(地震、录井、钻井、岩心或露头以及资料的密度和质量)。
b.储层条件:①同盆地、同凹陷或同构造带内已钻圈闭相同储层的储集能力及优劣成度;②储层的沉积相和储集体类型;③储层的岩性、厚度及分布的连续性;④储层的储集类型和物性条件;⑤储层段是否有同盆地、同凹陷或同构造带内的井可供标定、模拟和对比;⑥资料类型和证实成度(地震、录井、测井、岩心或露头以及资料的密度和质量)。
c.盖层条件:①同盆地、同凹陷或同构造带内已钻圈闭同类盖层的封闭能力及优劣程度;②盖层的沉积相、岩性、厚度及稳定性;③盖层的封闭类型和垂向封堵能力;④盖层中断层的数量、性质、规模及活动时期;⑤资料类型和证实程度(地震、录井、测井、岩心或露头以及资料的密度和质量)。
d.圈闭条件:①圈闭类型及规模;②同盆地、同凹陷或同构造带内同类型圈闭的含油气情况;③断块、岩性等圈闭的侧向封闭条件和性能;④地震测网的密度和资料的质量。
e.运移条件:①油气运移通道类型,如砂岩输导层、断层面、不整合面、底辟、高压释放带等;②供烃范围内圈闭与有效烃源岩连通的路径及通畅程度;③油气运移的方式、指向和距离。
f.保存条件:①圈闭形成后构造或断裂活动对圈闭封闭条件的影响;②区域水动力条件对油气聚集的影响;③是否遭受过水洗或生物降解破坏作用;④油气是否有过热或非烃气体(CO2、N2等)的潜入;⑤油气扩散作用对油气藏的影响。
g.运聚匹配条件:①同盆地、同凹陷或同构造带内同期的圈闭是否存在油气田或油气藏;②圈闭形成时间与油气主要生成时间、运移时间的关系。
2.地质条件存在概率的评估
使用地质条件存在概率评价标准,来评定目标圈闭各项地质条件的存在概率。
3.目标圈闭地质成功概率计算
a.单层圈闭地质成功概率的计算。
单层圈闭地质成功概率为该层各项地质条件存在概率之积,即:
中国海洋石油高新技术与实践
式中:Ps为单层圈闭的地质成功概率;Pt为烃源条件的存在概率;Pc为储层条件的存在概率;Pg为盖层条件的存在概率;Pq为圈闭条件的存在概率;Py为运、聚匹配条件的存在概率。
b.多层圈闭地质成功概率的计算。
如果各层圈闭对应的各项地质条件均相互独立,则:
该目标圈闭(构造)至少有一层圈闭获得地质成功,其概率为Pas:
中国海洋石油高新技术与实践
式中:Ps1为第一层圈闭的地质成功概率;Ps2为第二层圈闭的地质成功概率;Psn为第n层圈闭的地质成功概率,为了强调主要的钻探目的层,n值一般不大于3。
该目标圈闭各层圈闭均获得地质成功,其概率为Pts:
中国海洋石油高新技术与实践
最后,为了更好地把握主要地质风险因素,提高风险预测水平,并不断完善地质风险分析方法,要求进行钻后相关数据的整理,并按要求填写地质条件的钻探结果和钻后分析,对照钻前预测验证其符合程度,分析钻探成功或失利的原因。
六、集束勘探方法
中国海油入市以来,其经营管理方式迅速与国际接轨。反应在勘探上,也实现并正在实现着一种理念的转变,即由计划经济遗留的“储量指标”勘探理念——“我为祖国献石油”,向市场经济“经营型”勘探理念——“股东要我现金流”转变。入市后,股市对油公司业绩的衡量标准是现金流,它体现在勘探上不仅是新增储量的多少,而是一系列的经营指标——储量替代率、桶油勘探成本和资本化率。
储量替代率:是指新增探明可采储量与当年产量之比。
桶油勘探成本:是指每探明一桶可采原油储量所需的勘探费用,包括管理费用、研究费用、物探费用和无经济性发现的钻井费用。这些费用需进入当年勘探成本,叫做成本化。
资本化率:指有经济性发现的钻井费用与总勘探费用之比,这部分费用不进入当年勘探成本,可在油田开发中回收,故称资本化。
储量替代率反映了储量资产的增减。桶油发现成本是衡量勘探经营总体水平的指标,在保持稳定的勘探投人,保证100%储量替代率的前提下,要降低桶油发现成本,就要降低经营管理费用和每公里物探作业费用与每米进尺的钻井费用。当然大的储量发现会导致桶油勘探成本大幅度下降,但除特殊需要,油公司更希望保持股市稳定,无需披露重大储量发现。资本化率反映了油公司所占有的勘探区块(也是一种资产)的质量,它不仅可以降低桶油成本,更重要的是表现所占有的勘探区是否具备一定资源潜力、储量代替率是否有资源保障。
要想有多的储量发现就要打更多的井,在保证桶油发现成本承诺的前提下,只有降低单位作业成本。面对发展需要的压力、投资者的压力、服务价格走向市场后的压力,必须走出一条勘探管理新路子,于是集束勘探思路孕育而生。
集束勘探是探索适应市场经济条件下多快好省的勘探新理念,主要包括以下3层含义。
a.集束部署:着眼于一个领域或区带,选择具有代表性的局部构造集中部署,用较少的工作量以求解剖这一领域或区带,达到某一确定的地质目的。
b.集束预探:基于不漏掉任何一个有经济性油气藏为出发点,简化初探井钻井过程中取资料作业和测试,加强完钻过程中的测井工作,以显著提高初探井效率,大幅度降低初探井费用,用简化预探井、加速目标的勘探方法。
c.集束评价:一旦有所发现,则根据地下情况,优选最有意义的发现,迅速形成一个完整评价方案,一次组织实施,缩短评价周期和整个勘探周期。如有商业性,使开发项目得以尽快实施。
集束评价钻探包括两类不同取资料要求的钻井,一类是取全取准资料的井,此类井要充分考虑开发、工程、油藏甚至销售部门的需要,取足取好资料;另一类井是为了解决复杂油气田面上的控制问题,需要简化其中一些环节,作为集束井评价,以求得到以最低的评价费用取全取准资料,保证储量计算和编制ODP方案的需要。
在实施集束勘探一年的时间中,我们针对一个有利区带和目标共钻探集束探井20多口,初步见到以下效果:①储量代替率可望达到151%;②资本化率39%;③桶油发现成本保持在1美元;④完成了历年来最高的和自营勘探投资——16.75亿元;⑤建井周期缩短2/3;⑥每米钻井进尺费用降低40%。
通过一年的实践,主要体会如下。
1.以经济性发现为目的,统筹资料的获取
初探井是以经济性发现为目的的,关键在于证实有一定烃类产能、有一定厚度油气层的存在,精确的测试资料、储层物性资料、原油物性资料都可留在评价井钻探中获取。这就可以在初探井中作到不取心、不测试,从而大大简化钻井程序,达到降低钻井成本的目的。
一般来说初探井的经济成功率只有10%之间,我们可以在90%左右的初探井中实现低成本探井。事实证明用电缆式测试(MDO)、加旋转井壁式取心技术,完全可以保证不漏掉有经济测试价值的油气层。集束评价更有利于有目的地取好油藏评价的资料,在进行了早期油藏评价后,我们对油气藏模式有了基本的认识,就可以有目的地安排油藏评价井资料获取方案,大大减少了盲目性。
2.集束勘探在资料问题上体现了计划性、目的性
集束勘探“三加三简”的有所为和有所不为的获取资料原则——抓住有无油气,有油气则加强,无油气则从简;突出经济性,有经济性则加强,无经济性则从简;区分主力层与非主力层,主力层则加强,次要层则简化。这样保证了总体资料的质量,减少不必要的繁琐取资料工作量。
3.实现集束勘探要做好技术准备
首先应加强完井电测、简化钻井测试,测井要做好电缆测试(泵抽式取样)、旋转式井壁取心和核磁共振测试的技术准备。
其次,钻井工程借鉴开发生产井优快钻井经验,对初探井简化井身结构,打小井眼,不取心,尽可能保证钻井作业的连续性,提纯钻进时间比例,用集束勘探的办法尽量减少动员费用,在拖航、弃井等环节上提高时效,降低费用,保证稳定的、高质量的泥浆性能,打好优质的规则井眼,创造良好的测井环境。
第三,评价井的测试工作中,要做好直读压力计、多层连作、油管完井等技术准备。
4.集束勘探协调了长期困扰勘探家的三大矛盾
第一,协调了加大勘探工作量与有效控制成本间的矛盾。集束勘探可实现相同的勘探成本下,多打初(预)探井,总体上必然加快勘探进程。如在合同区义务勘探工作量确定的前提下,勘探成本的降低,则意味着抗风险能力的增强。
第二,协调了不同专业间的利益矛盾。长期以来地质家想多取资料——资料越多越好;钻井工程想快——钻完井越快越好;测井公司想省——下井次数越少越好。集束勘探实现了集约性的成本控制,使各专业各得其所。
第三,协调了老石油传统与现实市场经济间理念上的矛盾。在老石油地质家的传统观念中,是取资料越多越好、储量发现越多越好、采收率提得越高越好。把这些观念放在市场经济条件下,都会与勘探成本产生冲突,于是这些观念都变成了相对的、有条件的:资料——在保证不同勘探阶段起码质量要求下,取资料的工作量越少越好;储量发现——在保证勘探资本及时回收条件下越多越好,否则无须及时探明;采收率——在保证现金流和盈利率条件下越高越好,否则宁可要相对较低的采收率;勘探成功率——对油公司来讲,地质成功率毫无意义,油公司只要商业成功率,更关心的是勘探投入的资本化率;储量概念——不能只讲地质储量,对油公司来说更关心可采储量,尤其是可作为公司资产的份额可采储量。
集束勘探是我们由计划经济成功转向市场经济时,在经营理念上发生根本变革的表现。一年来的成功实践,不但在中国海油勘探家中产生了巨大观念上的震动,也影响到许多外国作业者,纷纷吸收或效仿集束勘探方法。集束勘探方法的产生,表明我国企业不仅可以进入国际市场,并且完全可以在市场运作中有所发现,有所发明,有所前进,创造出更好的经济效益。
在2002年中国海洋石油勘探年会上,将集束勘探发展为价值勘探的一部分,这是勘探工作进步的表现。这一新生事物的出现,使公司上市后出现了新情况:结束了国有独资的历史,十分关注投资的收益、储量增长的压力、成本的压力等。如此,必须对过去传统的勘探理念进行重新审视:由过去的地质调查研究型,变为经营油气实物的经营型,要创造经营价值。所以,价值勘探是一种以价值为取向的勘探理念,具体地说,每项工作以是否增加公司或股东的价值,作为决策的依据,即勘探的每个环节,以创造出更多的价值作为决策的出发点,勘探工作将围绕价值中心来进行。这也体现了勘探工作本身是发展的、动态的,在勘探工作不断进展中,随时拓宽、发展勘探方法,以促进海洋石油事业不停顿地、持续发展。
什么是能耗监测系统?
周圣华
作者简介:周圣华,中国有色金属矿产地质调查中心,地质处处长,高级工程师,矿产储量评估师。
1 矿产资源储量估算方法
1.1 基本概念
矿产资源储量估算方法,是指矿产资源埋藏量估算过程中,各种参数及其资源储量的计算方法和相应软件的统称。由于矿产资源赋存方式千差万别,开发利用方式也不尽相同,因此,必须要研究适合不同矿种的矿产资源储量估算方法。根据我国矿产资源勘查开发过程中的应用实践,就矿产资源储量估算方法选择的角度,可以将矿产资源划分为三大类:第一类是固体矿产资源,包括金属矿产、非金属矿产和煤;第二类是石油、天然气、煤层气资源;第三类是地下水资源。
1.2 矿产资源储量估算方法的主要种类
关于矿产资源储量估算方法,可以参照由国土资源部储量司组织编著,2000年4月由地质出版社发行的《矿产资源储量计算方法汇编》。
油气方面,用于资源储量估算的方法主要有容积法、物质平衡法、弹性二相法、概率统计法(亦称蒙特卡洛法,Monte-Carlo)以及产量递减法(计算最终可采储量);地下水方面,目前主要采用数值法。
固体矿产方面,根据国内的应用实践,可以分为三大类:
1.2.1 传统方法
根据计算单元划分方式的不同,又可分为断面法和块段法两种。这两种方法是我国几十年来矿产资源勘查、开发过程中应用最为广泛的两大基本方法。
1.2.1.1 断面法(亦称剖面法)
依据断面之间的相互关系,进一步分为平行断面法、不平行断面法。
平行断面法,依据断面的方向,可分为:水平断面法和垂直断面法。水平断面法适用于利用水平中段计算资源储量,多用于坑道控制的矿体以及露天开采矿床的资源储量计算。垂直断面法,依据断面位置的不同,可分为勘探线剖面法和线储量计算法。勘探线剖面法,要求用于资源储量计算的勘查工程(包括探槽、钻孔、坑道等)均位于勘探线剖面上,或偏离距离在允许范围内。线储量计算法,是以勘探线间的平分线为资源储量计算边界,逐个单元计算并累加,这种方法主要用于砂矿的资源储量计算。
平行断面法中,每个单元的资源储量计算方法主要有:梯形公式法、截锥公式法、楔形公式法、锥体公式法、似柱体公式法等;
不平行断面法:主要有普逻科菲耶夫计算法、佐洛塔列夫计算法。这两种方法,由于计算较为复杂,已经很少应用。
1.2.1.2块段法
依据块段划分原则的不同,可进一步分为:地质块段法、开采块段法、最近地区法、三角形法、等值线法、等高线法等。
地质块段法,是勘探阶段计算资源储量较为常用的一种方法。其基本做法是将矿体投影到某个方向的平面上,按照矿石类型、品级、地质可靠程度的不同,并根据勘查工程分布特点,将其划分为若干个块段,分别计算资源储量并累加。这类方法,通常用于勘查工程分布比较均匀、勘查手段较为单一(以钻探为主)、勘查工程没有严格按照勘探线布置的矿区的资源储量计算。地质块段法按其投影方向的不同,还可分为垂直纵投影法、水平投影法和倾斜投影法。垂直纵投影法,适用于陡倾斜的矿体;水平投影法,适用于产状平缓的矿体;倾斜投影法,通常选择矿体倾斜面为其投影方向,理论上讲,适用中等倾斜矿体,但因其计算过程较为繁琐,一般不常应用,多以垂直纵投影法或水平投影法代替。
开采块段法,适用于以坑道为主要勘探手段的矿区资源储量计算。基本做法是以坑道(包括部分钻孔)为边界划分大小不同的块段,分别计算资源储量并累加。该方法多用于生产矿区、基建矿区“三级”矿量的计算。
最近地区法(亦称多角形法),是根据矿体资源储量计算平面图(水平投影图或垂直纵投影图),以每个勘查工程为中心,取其与各相邻工程间距的1/2(有时根据地质规律采用内插法确定距离)为边界点,将矿体划分为一系列紧密连接的多边形单元,再依据每个单元中心工程的资料,分别计算其资源储量并累加。这种方法,对于工程少、分布不均,各工程揭露的厚度、品位变化大,矿体形态复杂的情况,为了充分考虑各工程参数的影响范围时才使用,一般不采用此方法。
等值线法,是利用矿体等厚线图或厚度 品位等值线图,分别计算各等值线范围内的体积、品位和资源储量。其优点是可以借助上述图件,形象地反映矿体形态、厚度、有用组分分布及变化规律;但缺点是制图复杂,特别是对于含有多种有用组分的矿区,必须按每种组分分别制图,所以,实际工作中也不常用。等高线法与之类似。
1.2.1.3 地质统计学方法
地质统计学方法,亦称克立格法,是由南非地质学家克里格创立的。目前,西方国家在矿业筹资、股票上市、矿业权交易过程中,基本都是采用这种方法评价矿产资源,估算矿产资源储量;国际上一些较大的矿业公司、勘查公司以及矿业咨询公司,都已研制或拥有以地质统计学原理为基础的矿产资源评价软件,并已陆续进入我国矿业领域。
地质统计学方法,是以区域化变量理论为基础,以变异函数为主要工具,对既具有随机性、又具有结构性的变量进行统计学研究的一种方法。这种方法的使用,不仅提高了矿产资源评价的科学性,而且,也大大提高了矿产资源评价的效率;对于实行市场经济体制的国家,为使矿产资源评价及时反映市场因素的变化,实现矿产资源储量的动态管理,具有尤其突出的优越性。
地质统计学方法是一套方法系统。目前,在我国已有认识并获得应用的主要有:二维及三维普通克立格法、二维对数正态泛克立格法、二维指示克立格法、二维及三维协同克立格法以及三维泛克立格法。
1.2.1.4 SD法(最佳结构曲线断面积分储量计算法)
SD法是在原国家科委和地矿部支持下,我国自行研制的一种矿产资源储量计算方法。该方法以断面构形为核心,以最佳结构地质变量为基础,利用Spline函数和动态分维几何学为工具,进行矿产资源储量的计算。其最具特色的内容是根据SD精度法所确定的SD审定法基础,从定量角度定义矿产资源勘查工程控制程度和资源储量精度。
1.3 矿产资源储量估算方法的管理
目前,我国对矿产资源储量估算方法仍然实行较为严格的管理,除采用传统方法计算资源储量外,采用其他方法或软件,都必须要经过专家鉴定,取得国家资源储量管理部门认可,并予以公告后,方能用于生产实践。
到目前为止,我国经过认可的矿产资源储量计算方法和软件(固体矿产方面)主要有:
(1)KPX2.1版本(固体矿产勘查评价自动化系统)(中国地质大学(武汉)研制);
(2)《中文地勘系统软件》(CGES)(武警黄金指挥部从加拿大引进并汉化);
(3)三维普通克立格法程序系统(北京科技大学研制)
(4)GXPX交互式固体矿产勘查微机评价系统(福建省区调队研制);
(5)地质统计学在薄脉状金矿床品位优化估算系统(武警黄金研究所研制);
(6)SD法矿产资源储量计算软件(2.0版)(北京恩地科技发展有限责任公司);
(7)Minesight软件(2.5版)(美国Minetec公司研制,中国黄金总公司北京金迈泰克科技发展有限公司中国全权代理);
(8)Datemine软件(5.0版)(英国矿物工业计算有限公司研制,北京有色冶金设计总院引进)。
2 矿床工业指标
2.1 基本概念
矿床工业指标,是评价矿产资源储量质量特征的基本准则,是衡量矿床工业价值的重要依据,是圈定矿体、计算资源储量的基本参数。不同矿区、不同矿种,都有其特定的合理的工业指标。某一矿区矿床工业指标的确定,往往要综合考虑多种因素,包括政府方面的经济政策、资源政策、环保政策;市场方面(国内、国外)的供需情况、产品价格情况;宏观方面的资源形势、社会开发利用和加工技术水平;微观方面的资源产出特点、加工技术条件、可能的开发方式以及产品方案,等等。因此,某一具体矿床的工业指标,必须在一定勘查工作程度和相应的矿石选冶试验基础上,经过较为详细的技术经济论证和综合研究,方能合理确定。
2.2 矿床工业指标的主要内容
矿床工业指标,通常包括两个方面的内容,一是矿石质量方面的要求,一是开采技术条件方面的要求。就金属矿产而言,矿石质量方面的要求主要有:边界品位、最低工业品位(单工程最低工业品位、块段最低工业品位、矿床最低工业品位)、有害组分最大允许含量、有益组分最低含量(综合评价指标)。开采技术条件方面的要求主要有:最低可采厚度、夹石剔除厚度;对于薄脉型矿体,还包括最低工业米百分值;对于露采矿床,还有剥采比、边坡角、最低露采境界等方面的要求。
此外,针对某些矿产的特殊情况和要求,还可提出其他方面工业指标的要求;针对克里格方法,可以采用单项品位指标;针对同体共生的贵金属或有色金属矿床,可以下达综合品位指标。
2.3 矿床工业指标的管理
按照现行管理制度,凡依据矿组(种)规范推荐的一般工业指标,无论勘查工作程度高低,只能估算资源量;需要提交基础储量和储量的,必须在完成一定程度选冶试验的基础上,由具有资质的矿山设计单位进行技术经济论证并出具专门材料,经业主认可批复后,方能作为估算基础储量和储量的依据。
3 矿石选冶试验程度
目前,应继续执行1987年全国储委、国家计委、国家经委发布的《矿产勘查各阶段选冶试验程度的暂行规定》(储发[1987]27号文)。
选冶试验程度划分为五种:可选(冶)性试验、实验室流程试验、实验室扩大连续试验、半工业试验、工业试验。
各勘查阶段的选冶试验程度要求:
(1)预查阶段:类比评价即可。
(2)普查阶段:一般矿产类比;组分复杂、难选及尚无成熟经验的矿产,要求做可选(冶)性试验或实验室流程试验。
(3)详查阶段:易选矿产:类比;一般矿产:做可选(冶)性试验或实验室流程试验;难选矿产:要求做实验室扩大连续试验。
(4)勘探阶段:易选矿产:做可选(冶)性试验或实验室流程试验;一般矿产:做实验室流程试验或实验室扩大连续试验;难选矿产:要求做半工业试验;建设大型矿山的,应当做工业试验。
4 矿体的圈定
矿体的圈定是资源储量估算较为关键的环节。理论上讲,矿体的圈定必须遵循地质规律,决不允许“见矿连矿”;实际上,矿体圈定是否合理,是否符合客观实际,不仅与对目的矿区地质规律的认识、研究程度有关,而且与地质工作者的经验和水平也有很大关系。根据我国几十年地质勘查工作经验总结和有关规定(原国家矿产储量管理局1991年国储[1991]164号文),结合现行矿种规范的有关规定,传统方法估算矿产资源储量过程中的矿体圈定,大致需要掌握如下原则:
4.1 单工程矿体边界的圈定
(1)依据边界品位和夹石剔除厚度指标初步确定矿体边界与矿体中的夹石;
(2)依据单工程最低工业品位和最低可采厚度指标,调整矿体边界和矿石与夹石的界限;
(3)关于“穿鞋戴帽”问题。所谓“穿鞋戴帽”,是指中部品位较高的矿体,在单工程圈定边界时,将上、下部介于边界品位与最低工业品位的样品带入的现象。通常的做法是允许带入相当于“夹石剔除厚度”以内的样品;当连续出现多个介于边界品位与最低工业品位的样品,并且厚度大成片出现时,应单独圈出;
(4)多组分矿体的圈定,可采用“混圈法”。即单工程中只要有一种组分达到边界品位和最低可采厚度要求,就可圈入矿体;若有两种或两种以上组分达到最低工业品位要求,并在整个矿体或矿床中具有一定规模,即为共生矿;未能达到边界品位要求的,但能够回收利用的,即为伴生矿。
4.2 矿体的连接
4.2.1 相邻见矿工程之间的矿体连接
(1)相邻见矿工程之间的矿体,一般采用直线对应连接;在有充分的地质依据时,也可采用曲线连接;
(2)采用曲线连接时,矿体任意位置的厚度,不得大于相邻工程实际控制的矿体最大厚度;
(3)当相邻见矿工程之间,出现破矿断层或岩脉时,应依据地质规律合理连接。
4.2.2 矿体的有限外推
当位于某一地质可靠程度对应网度范围内的两个相邻工程,一个见矿,一个未见矿时,矿体的圈连称为有限外推。
(1)当矿体长度与厚度存在正相关关系并经过足够的统计资料证实时,可以根据见矿工程控制的实际厚度,按照比例外推;
(2)无规律可循时,一般按工程间距的1/2尖推或1/4平推;当边部工程存在矿化现象(工程品位在边界品位的1/2以上)时,则可按工程间距的2/3尖推或1/3平推;
(3)见矿工程为米百分值或米克吨值工程时,一般不得外推;但对于薄脉型矿体,则可酌情外推。
4.2.3 矿体的无限外推
当见矿工程之外没有工程控制,或未见矿工程距离见矿工程较远(距离大于相应地质可靠程度对应网度)时,矿体的圈连称为无限外推。无限外推时,若矿体长度与厚度之间无规律可循,一般按相应地质可靠程度所对应网度的1/2尖推或1/4平推。
4.3块段的划分
块段是资源储量计算的基本单元,块段划分是否合理直接影响资源储量估算的精度。一般情况下,块段划分应当把握如下几项原则:
(1)不宜过大,也不宜过小。一般沿矿体走向上以两相邻勘探线为限,倾向方向上以两相邻工程连线为界;
(2)同一块段内,矿体要连续,产状要稳定;需要分别计算资源储量时,矿石类型、工业品级要相同;
(3)同一块段的地质可靠程度必须相同。
5 矿产资源储量估算中主要参数的计算
5.1 矿体厚度的计算
矿产资源储量估算过程中,常用到三种厚度:水平厚度、垂直厚度、真厚度。选取那种厚度,视估算方法而定。采用纵投影面积时,应计算平均水平厚度;采用水平投影面积时,应计算平均垂直厚度;采用真面积时,应计算平均真厚度。
平均厚度,一般采用算术平均法计算,当工程分布很不均匀或厚度变化很大时,应当采用影响长度或面积加权计算。
5.2 平均品位的计算
矿产资源储量估算过程中,常需要计算单工程平均品位、块段平均品位和矿体平均品位。当采样长度变化不大,品位变化比较均匀时,可以采用算术平均法计算。当采样长度变化大,或品位很不均匀时,需要采用加权平均法计算;计算单工程平均品位时,应当采用样品长度加权;计算块段平均品位时,应当采用矿体截面面积加权;计算矿体平均品位时,应当采用块段投影面积加权。当矿区勘查工作程度低、样品数量较少、品位变化又较大时,应当采用几何平均数法求取矿体的平均品位。
5.3 特高品位的确定与处理
特高品位的存在,对矿产资源储量的估算结果影响很大。特别是在一些贵金属和有色金属矿床中,特高品位会经常出现,若不予处理,将会使矿产资源储量估算结果产生严重偏差。当有怀疑特高品位存在时,首先应对副样进行第二次分析,如果第二次分析结果在允许误差范围内时,再作特高品位判断(确定特高品位下限值)。
特高品位下限值的确定方法很多。克立格法和SD法,采用统计学方法,确定过程比较复杂;也可以采用经验法,比较简单。根据国储[1991]164号文的有关规定,对于有色和贵金属矿产,特高品位的下限值,一般可确定为矿体平均品位的6~8倍,矿体品位变化系数大时,取上限值;变化系数小时,取下限制。特高品位处理时,通常不要使其影响范围过大,以用特高品位所影响的块段平均品位代替为宜;当矿体厚大时,也可以用特高品位所在的单工程平均品位代替。
特高品位处理后,单工程平均品位、块段平均品位以及矿体平均品位均须重新计算。
5.4 体重的计算
体重是矿产资源储量估算的一项重要参数,必须认真对待体重样的采集和计算。
小体重样的采集,一方面,要注意样品的代表性,包括空间分布的均匀性和矿石类型、品位区间上的代表性;另一方面,要保证样品的数量,通常主要矿石类型的小体重样品不应少于30个,确因样品有限无法保证数量时,应尽量采集与矿体平均品位接近,并且矿物组成、结构构造等矿石特征代表性好的小体重样品。
在测定小体重的同时,为了评价其代表性,一般应作化学分析;湿度较大的矿石,应同时测定湿度;对于松散、多孔、裂隙发育的矿石,应采集少量大体重样(规格0.5m×0.5m×0.5m),测定大体重。
矿产资源储量估算过程中,一般采用矿区平均体重值统一参与计算。矿区平均体重,通常在经过样品代表性论证和取舍后,采用全区有效小体重的算术平均法求取;对于体重与矿石类型或品级存在相关关系的情况,应根据各矿石类型或相应品级在全矿区所占比例,合理选择参与计算的小体重样品后,才能计算矿区平均体重;对于松散、多孔、裂隙发育的矿石,应采用大体重进行校正;湿度大于3%时,应进行湿度校正。
需要分矿石类型估算资源储量时,平均体重应按不同矿石类型分别计算。当矿区矿石类型较为单一、体重变化也不大时,可以采用全矿区所有样品的算术平均值,参与资源储量的估算。
6 矿产资源储量报告的基本形式
6.1 矿产勘查报告
主要用于矿产勘查工作的阶段性总结或最终总结。报告编写执行《固体矿产勘查/矿山闭坑地质报告编写规范》(DZ/T 0033—2002)中附录A“固体矿产地质勘查报告编写提纲”;采用地质统计学方法估算资源储量的,报告资源储量估算部分的编写执行附录B“运用地质统计学方法估算资源/储量的固体矿产地质勘查报告中储量估算部分的编写提纲”。
6.2 矿山闭坑地质报告或矿山阶段性资源储量注销报告
主要是指在矿山关闭或阶段性关闭环节注销资源储量而编制的专门报告。报告编写执行《固体矿产勘查/矿山闭坑地质报告编写规范》(DZ/T 0033—2002)中附录C“固体矿产矿山闭坑地质报告编写提纲”。
6.3 矿产资源储量核实报告
主要是指矿山企业改制、矿权转让以及矿业企业上市过程中,需要对矿山占用的矿产资源储量进行核实而专门编制的报告;也包括建设项目压覆矿产资源储量而需要编制的报告。报告编写执行2007年2月6日国土资源部发布的《固体矿产资源储量核实报告编写规定》(国土资发[2007]26号)。
6.4 矿产资源储量检测地质报告
主要是为适应资源储量登记统计、资源储量动态监测以及矿权管理的需要,针对小矿、民采矿以及砂石粘土矿等需要专门编制的报告。报告编制目前尚无统一要求,1996年原地矿部资源局发布的《简测计算占用矿产储量的若干说明》中涉及部分要求,大部分省(自治区、直辖市)对简测地质报告的编写已作了相应规定,可参照执行。
7 矿产资源储量报告的完备程度
按照现行规定,完整的矿产资源储量报告应当包括如下主要内容:
7.1 文字报告
7.2 主要附件
(1)矿业权权属证明材料;
(2)勘查资格证书复印件;
(3)出资人与勘查单位签订的勘查合同或勘查协议;
(4)矿床工业指标论证材料以及相应批件;
(5)矿石选冶加工技术试验报告;
(6)矿山建设可行性研究报告或预可行性研究报告以及相应批件;
(7)其他有关专题报告。
7.3 主要附图
(1)矿区或矿床地质地形图(1:1000~1:2000);
(2)取样平面图(包括地表取样平面图、中段取样平面图);
(3)钻孔柱状图以及探槽、坑道素描图;
(4)勘探线剖面图或资源储量计算剖面图;
(5)矿体纵投影图或水平投影图;
(6)其他需要的图件。
7.4 主要附表
(1)基本分析结果表以及化学全分析结果表;
(2)样品分析内检、外检结果表;
(3)钻探工程质量评定表;
(4)小体重测定结果表;
(5)单工程矿体平均品位、体重计算表(槽探、坑探、钻探);
(6)单工程矿体厚度计算表(水平厚度或垂直厚度、真厚度,槽、坑探与钻探分别造册);
(7)块段平均品位、厚度、体重计算表;
(8)块段(或剖面)面积计算表;
(9)块段资源储量计算表;
(10)矿体资源储量计算表;
(11)矿区资源储量计算表;
(12)其他需要的表格。
“智慧哨兵”油气管道智能实时监测系统有什么优势?
能耗监控系统是为耗电量、耗水量、耗气量(天然气量或者煤气量)、集中供热耗热量集中供冷耗冷量,与其他能源应用量的控制,可以进行能耗数据自动采集、集中监测、大数据分析,以满足企业能源供应、消耗全过程的实时监测,加强企业能源集约化管理,提高能源利用效率。
“双碳”推进急速的当下,多数企业所分布的数量众多,所分布范围广泛,所以如果采用传统采集模式,无法做到在短时间内采集多个企业的能耗数据,多数所取得数据具有延时性,无法获取准确能耗。“能耗双控”的目标是要推动能源清洁低碳安全高效利用,也促使一些高能耗行业的产业结构、能源结构调整升级。
针对各个能耗进分类、分项、分户的进行计量,对数据远程传输、数据采集、统计分类、发布远传等多种功能。帮助提高节能意识,从而能够实现有效的节能,提高自动化水平,实现国家能耗指标,达到合理用能、节约能源。
能耗监测系统功能介绍:
数据采集:可对整个范围内的用户进行实时监测,能够对于能耗使用进行能耗实时反馈。
数据分析:可对各回路的用电情况进行详细的分析与记录,并可以通过表格的方式来展现,通过多元化的图形进行显示,可以通过更换图形图表方式对数据进行比较。
能耗数据统计:对用户提供分类分项能耗统计和报表打印,能够对用电情况(可根据年、月、日)进行打印和统计。
故障报警:如果能耗超出限定值,就会发出语音提示、系统提示、短信提醒等多种方式进行沟通。
通过 2D、3D 等可视化的手段对用能情况进行及时跟踪和有效管理。包括配电照明、空调、供热、建筑物的供水和排水等。Hightopo搭建多种轻量化的能源可视化管理系统。每个模块分离独立开发然后集成,减少循环依赖和耦合。从而统一监管各计量点,优化建筑管理模式。一方面找出低效率运转的设备或对应的楼层区域,另一方面找出异常能耗,降低峰值功耗水平,并根据数据分析给出合理化建议。
2D 可视化面板展示关键指标,通过对空调、照明以及特殊渠道的用电统计,对接后台数据实时更新,监测建筑能耗,同时展示对节能减排做出的贡献统计,并基于数据库,给出各类分析报告,为节能优化改造提供可靠依据。
煤矿能耗监测支持基于空间、时间、质量等多维度数据,对矿井生产系统各能耗部署动态监测,当超过安全临界值时立即触发告警,通知相关人员及时发现、及时制止且合理分析制定节能降耗措施,实现能源高效利用和低碳发展。
请点击输入描述
提升节能工作的管理水平,达到节约能源、供需互动的多种能源耦合目的,实现集中监控、管理以及分散控制。
建筑能耗
集成楼宇内外的照明系统,用 HT 智慧园区可视化平台对楼宇内的照明设备进行集中监控,可调整不同时段的灯光效果模式,对环境照度以及照明能耗通过数据趋势图进行分析展示,对室内外照明检测运行状态进行实时更新,让管理人员能够及时处理照明系统问题。通过系统接入可视化,让问题及时发现及时处理,帮助运维人员及时处理照明设备的维修问题,提高楼宇的管理效率和服务水平。
请点击输入描述
机房能耗
减少能源管理环节,优化能源管理流程,建立客观能源消耗评价体系。能耗在线监测系统的建设,可实现在能耗数据分析的基础上对能源使用的流程优化再造,有效实施科学有效的能耗考核体系,提升能源节约的意识,提高能源管理的效率。并且能够及时了解真实的能耗情况,从而提出节能降耗的技术和管理措施,实现能源管理水平的提升。
当前,降低制冷系统的能耗是数据中心规划建设的基本准则,且影响着数据中心建设效益。采用可视化节能策略,利用系统提供的智能算法,计算当前设备和环境温度,自动给出各个制冷设备的合适功率。优化数据中心空调气流,达到降低能耗,有效制冷的科学应用。
通过智能化、可视化手段,进一步发挥能源优势,构建绿色制造体系,推动传统产业质量变革、效率变革、动力变革,为能源发展全局和绿色构造做出贡献。让能耗直观可视、清晰透明,也便于分类统计。使全运营管理人员对楼宇耗能情况掌握更加全面及时,确保系统可以运行在最佳节能状态,获得节能收益。
耗能工质的能源统计的主要内容
随着西气东输的不断推进,我国油气管道里程数不断增加,西气东输站场运维具有多气源、多用户、用户需求种类多的特点,供气保障难度高,站场管控压力大。为了降低站场运行风险,提高管网运营效率。传统管道运维过程中数据采集人工化、异常报警不及时、设备智能化水平等不断凸显。
将大数据,云计算,物联网等先进技术与油气管道业务相融合,实现异常数据智能化预警、设备 GIS 信息动态展示等功能。从而达到降低运营成本,提高生产效率,减少安全隐患的目的,进而促进管道管理的标准化,规范化和智能化进程。
应对复杂多变的供气环境,保障全国人民的天然气使用,加快管道智能化是赋能油气行业高质量发展的必然选择。
且在低碳目标下,能源领域的数字化、智能化转型作用更加凸显。能源数字化的意义,不仅在于把人从繁重体力劳动中解放出来,对企业还有诸多好处。
油气管道智能监测解决方案,形成了集中监视的高效管控模式,实现站场分输远程自动控制,推动输气管道站场管理智能化转型,能使站场运营管控效率显著提升。
油气管道数字孪生对油气管道运维的优势:数据进行实时展示,可以提升管理效率和生产效率,促进绿色低碳转型。
综合了物联网、人工智能、大数据、通信技术、GIS、可视化等多种技术,对油气管道运维全生命周期数据进行统一管理与维护。提高管道运维管理的智能化水平,将整个工艺流程透明化、可视化,从优化过程端入手达到控碳、减碳的目的。
实时监测系统涵盖产量分析、能耗分析、设备运维、安全防护以及厂区监控等板块。
运用物联网、大数据、人工智能技术对传输到管理中心的智能感知数据进行分析计算,并通过可视化技术实现对日常运维的辅助决策、智能状态感知、智能数据分析、智能信息发布、智能设备管理、智能业务管理六大功能。
2D 面板采用曲线图、趋势图、统计图等多种图表,实现分输量数据、进出站压力、压缩机运行状态、设备完整性、电能波形、综合流程分析等数据的实时可视化展示。管道工作压力是油气管道设计中的一个重要部分。Hightopo通过对接测试系统,将管道的进站压力、站内压力、出站压力进行数据采集,并通过丰富完善的图表库资源支持,将一年内的压力变化通过折线图动态展示。点击折线图上方对应的图标即可快速查看。有利于工作人员合理调配泵站和压气站的数量、站内机组的功率以及管道的耗钢量。
设备完整性在管理过程中,贯穿设备自安装使用开始直至报废的生命周期。支持根据设备情况自由设置监控设备,将抽象复杂的数据通过 HT 可视化图表进行清晰反应,提高油气站场设备可靠性,降低生产运行风险。
充分利用物理模型、传感器更新、运行历史等数据,并依托其可视化技术,将西气东输二线广南支干线管道演示,包括地下管线、管线阀门、卧式分离器、旋风过滤器、空冷器等。化繁为简,便于信息的传达与沟通。
三维场景内双击压缩机厂房即可查看压缩机工作状态。通过 3D 可视化,将压缩机的整体结构设备分布情况进行立体化的呈现,点击设备对应按钮即可随意切换不同压缩机工作视角,不同颜色的线条代表着不同的空气的流动,彻底解决了设备在进气、压缩和排气过程中只能依靠抽象讲解演示的弊端,满足多样化监测需求。
场景内点击压缩机即可查看机器拆解过程,2D 面板重点显示压缩机技术参数、安装信息、设备参数、历史故障、历史维修、历史保养、备品备件等信息。将原本复杂的分析数据,以直观的形式表现,简化用户的理解难度。
3D 空间内展现了机柜间三维模型以及机柜分布。与底层数据采集系统进行集成,能实时查看温湿度、漏水监测等动环数据,能更新配电监测实时数据。2D 面板显示台账信息和配电监测。实时的管理与监控低压设备以及台区综合评价状态,对设备资源进行状态查询、参数监测、预警告警等智能监测功能。
工艺工法
工艺工法重点模拟工法流程,运行管道走向,同时经过设备时进行相关数据信息展示,运行中整体场景变暗,流经部分设备及管线亮度提升。
为了降低站场运行风险,提高管网运营效率,基于运行数据,强大的渲染能力,搭建的可视化解决方案,形成了集中监视的高效管控模式,实现站场分输远程自动控制,推动输气管道站场管理智能化转型,使站场运营管控效率显著提升。
关于油气采集的可视化系统,采用 2.5D 的轻量化设计线上智慧油田。系统以四川地图为基,展示整个省的油田分布。通过 2D 组态了解石油勘探—石油开采—油气集输—井下作业—石油化学工业整个流程。
管理人员可直接查看设备的维修状态报告,上面清晰列明设备维修是否到期,维修计划是否到期,维修计划数量是多少。通讯、除磨、变压机是否有故障,故障是多少等等,使现场人员更方便、高效地进行生产线的管理。
通过可视化动画效果和子菜单的数据可视化图表载入,设计了海上油气集输智慧石油开采可视化综合管理系统。打破信息壁垒与孤岛,实现互联互通和信息跨部门跨层级共享共用。
典型地区环境地质指标研究
1、一次能源和二次能源
一次能源是指自然界中以现成形式存在,不经任何改变或转换的天然能源资源,即从自然界直接取得并不改变其形态和品位的能源。为原煤、原油、油页岩、天然气、核燃料、植物燃料、水能、风能、太阳能、地热能、海洋能、潮汐能等。
二次能源是指为了满足生产工艺和生活的特定需要以及合理利用能源,将一次能源直接或间接加工转换产生的其它种类和形式的人工能源。如由原煤加工产出的洗煤;由煤炭加工转换产出的焦炭,煤气;由原油加工产出的汽油、煤油、柴油、燃料油、液化石油气、炼厂干气等;由煤炭、石油、天然气转换产出的电力。
2、余热
余热是指工业企业生产过程中释放出来的可被利用的热能。可能回收的余热种类有:高温废气余热,高温产品及高温热渣液的物理热,冷却介质余热,废气废水余热,化学反应余热。
3、耗能工质
在生产经营活动中,需要消耗某些工作物质,而生产这些工作物质,需要消耗一定数量的能源,利用这些工作物质就等于间接地消耗能源。另一方面,这些工作物质的使用能够替代或减少其它能源的消耗,而这些工作物质不属于通常所指的能源之列。例如,工业用水、压缩空气、电石、乙炔、氧气等等。这些工作物质被称为耗能工质。(注意:不同的行业对耗能工质有不同的规定范围)
4、能源计量
能源计量是指在能源流程中,对各环节的数量、质量、性能参数、相关的特征参数等进行检测、度量和计算。能源计量是能源统计的技术基础。能源统计建立在能源计量记录的基础之上,没有能源计量就没有能源统计,只有做好能源计量,才能做好能源原始记录、统计台帐,进行统计汇总和统计分析。
5、热量单位(焦耳、卡)
焦耳是热、功、能的国际制单位。我国已规定热、功、能的单位为焦耳。焦耳的定义为:1牛顿的力(1牛顿=1千克·米/秒)作用于质点,使其沿力的方向移动1米距离所作的功称为1焦耳。在电学上,1安培电流在1欧姆电阻上,在1秒种内所消耗的电能称为1焦耳。
卡是应淘汰的热单位。卡的定义是:1克纯水在标准气压下把温度升高1摄氏度所需要的热量称为1卡。热量的常用单位为20℃卡,简称卡,某些西欧国家采用15℃卡,我国采用的是20℃卡。在我国的现行热量单位中,卡暂时可以和焦耳并用。
6、燃料及发热值
燃料是一种可燃烧的物质,通过化学或物理反应(或核反应)释放出能量,燃烧时产生热量和动力。燃料热值也叫燃料发热量,是指单位质量 (指固体或液体)或单位的体积(指气体)的燃料完全燃烧,燃烧产物冷却到燃烧前的温度(一般为环境温度)对所释放出来的热量。
燃料热值有高位热值与低位热值两种。高位热值是指燃料在完全燃烧时释放出来的全部热量,即在燃烧生成物中的水蒸汽凝结成水时的发热量,也称毛热。低位热值是指燃料完全燃烧,其燃烧产物中的水蒸汽以气态存在时的发热量,也称净热。我国是按低位热值换算的。
固体或液体发热量的单位是:千卡/千克或千焦耳/千克。气体燃料的发热量单位是:千卡/标准立方米或千焦耳/标准立方米。
7、标准燃料和标准煤
标准燃料是计算能源总量的一种模拟的综合计算单位。在能源使用中主要利用它的热能,因此,习惯上都采用热量来做为能源的共同换算标准。由于煤、油、气等各种燃料质量不同,所含热值不同,为了便于对各种能源进行计算、对比和分析,必须统一折合成标准燃料。标准燃料可分为标准煤、标准油、标准气等。我国以煤为主,采用标准煤为计算基准,即将各种能源按其发热量折算为际准煤。
标准煤亦称煤当量,具有统一的热值标准。我国规定每千克标准煤的热值为7000千卡。将不同品种、不同含量的能源按各自不同的热值换算成每千克热值为7000千卡的标准煤。
能源折标准煤系数=某种能源实际热值/标准煤热值
8、当量热值和等价热值
当量热值又称理论热值(或实际发热值)是指某种能源一个度量单位本身所含热量。当量热值是能源统计中经常使用的一个热值概念。
等价热值也是能源统计经常使用的一个热值概念,是指加工转换产出的某种二次能源与相应投入的一次能源的当量,即获得一个度量单位的某种二次能源所消耗的,以热值表示的一次能源量,也就是消耗一个度量单位的某种二次能源,就等价于消耗了以热值表示的一次能源量。因此,等价热值是个变动值。
某能源介质的等价热值=生产该介质投入的能源/该介质的产量
=该介质的当量热值/转换效率
9、工业总产值
指工业企业在报告期内生产的以货币形式表现的工业最终产品和提供工业劳务活动的总价值量。它包括本期生产成品价值、对外加工费收入和自制半成品、在制品期末期初差额价值,不包括非本企业生产的工业产品价值、本企业非工业活动单位的非工业产品价值和收入以及本企业工业生产过程中产生的废料(其出售的价值也不包括在产值内。
10、工业增加值
工业增加值是企业生产产品或提供服务过程中新增加的价值,是总产出与中间投入之间的差额。是指工业企业在报告期内以货币表现的工业生产活动的最终成果。它的计算方法有两种:生产法和收入法(分配法)。 1、能源购进、消费和库存统计
这项统计是视能源为消费资料,将能源作为原料或燃料消费时,由能源消费行为的企事业执行的报告内容。
2、能源加工转换统计
这项统计由有能源加工转换活动的工业企业或车间填报。它反映能源加工、转换过程中能源的投入与产出之间的定量关系;是计算综合能源消费量的基础。为计算、分析能源加工转换效率及其影响因素、为挖掘节能潜力、编制能源平衡表提供资料。
3、能源经济效益统计
这项统计是为计算能源利用效率而进行的统计。包括产值能耗、人均综合能源消费量等等。
4、能源单耗指标统计
这项统计是为计算企业在生产过程中生产某一产品而进行的统计,分析生产过程中能源消费的情况,以挖掘节能潜力和计算节能量。
从能量利用角度观察耗能工质可分两类: 一类通常称为能量形式来使用(如压缩空气、电石、乙炔等), 另一类通常不用作为能量使用的耗能工质(如自来水、深井水和氧气等),也就是说,在生产经营活动中,需要消耗某些工作物质,而生产这些工作物质,需要消耗一定数量的能源,利用这些工作物质就等于间接地消耗能源。 另一方面,这些工作物质的使用能够替代或减少其它能源的消耗,而这些工作物质不属于通常所指的能源之列。例如,工业用水、压缩空气、电石、乙炔、氧气等等。这些工作物质被称为耗能工质。
矿场油气集输是什么?
一、研究区概况
大庆市位于松嫩平原中部,黑龙江省西部,属松花江流域,是我国最大的石油、石化生产基地。现辖肇州、肇源、林甸、杜尔伯特四个县,以及萨尔图、让胡路、龙凤、红岗、大同五个区,总面积21 219 km2,截至2006年10月18日,总人口数为265.7万人,工业企业1000余家。其中市区面积5107 km2,人口121.2万。大庆市区行政区划主要构成如表7-5所示,地理位置如图7-1所示。
表7-5 大庆市区行政区划表(2004年)
图7-1 大庆市区行政区划图
(一)地质与地形地貌
大庆市在地质构造上属松辽盆地,它位于松辽盆地北部,处于松花江、嫩江一级阶地上,地层沉积厚度达6000 m以上。在漫长的地质构造运动作用下,大庆市地下岩层形成两侧为凹陷的构造——三肇凹陷和齐家古龙凹陷,中部为隆起构造——大庆长垣构造。大庆长垣是松辽盆地中央坳陷区北部的一个大型背斜构造带,南北长140 km,东西最宽处约70 km。正是被称为“大庆长垣”的构造,孕育了大庆油田的主体,长垣之上,自北而南有喇嘛甸、萨尔图、杏岗村、太平屯、高台子、葡萄花和敖包塔7个油田。
从第四纪地质构造上来看,大庆市可以分为:冲击层、低漫滩堆积层、第四系水系、风积层、高漫滩堆积层、洪积(冲积)层和全新统,见表7-6。
表7-6 大庆市第四纪构造及其面积
全市地势东北高、西南低,一般地面高程在126~165 m之间,自然坡降在1/5000至1/3000左右,相对高差较小,为10~39 m,境内无山无岭,地貌表现为坡状起伏的低平原。
从地貌成因类型及形态特征看,大庆大面积为冲积洪积湖积低平原,局部为冲积洪积河漫滩、风积沙丘地貌。冲积洪积湖积低平原分布于大庆市中部广大地区,地形平缓,表现为坡状起伏:冲积洪积河漫滩呈条带状分布于沿江地带,地势平坦,地面湿润,并分布有较多季节性泡沼和沼泽湿地及小块的残留阶地;风成沙丘呈北西-南东向条带状分布,大部分现已固定或半固定。在地势稍高多为平缓的漫岗,其上植被发育较差,平地上多为耕地、草原,间有许多面积不大的盐碱小丘;低处多为排水不畅的季节性积水洼地和低位沼泽,以及大大小小的碱水泡子。
(二)气候
大庆市地处北温带欧亚大陆东缘大陆季风气候区,属于半湿润与半干旱区域,受蒙古内陆冷空气和海洋暖流季风的共同影响。春季多大风,少雨干燥;夏季短暂,受太平洋高压气团影响,雨热同季,高温多雨;秋季日照长,常有早霜;冬季漫长,受高空西北气流控制,严寒少雪。市区多年平均气温3.2℃,1月份平均气温-19.6℃,7月份平均气温22.8℃,极端最低气温-37.7℃,极端最高气温37.4℃。无霜期140天,年平均日照时数为2826h。季节性大风明显,年平均风速3.9m/s。
大庆市气候灾害最主要的是干旱,特别是春季,春季降水不到全年的15%。由于年内降水分配不均,强度大,降低了降水的有效性,造成夏、秋洪涝灾害。此外,低温寒冷、霜冻、冰雹、大风出现的频率较高,造成程度不同的其他灾害。
(三)土壤
大庆市区土壤是在特定的地貌、成土母质、气候、水文、植被等成土因素的综合作用下形成的。草原土壤占市区总土地面积的 18.64%,是主要的耕地土壤;水文土壤主要有草甸土和沼泽土,其中草甸土占市区总土地面积的52.23%。大庆地区特殊的自然地理环境使区内土壤既有一般的成土规律,又有特殊的隐域性成土方式。第四纪粘土、亚粘土为主的沉积物,决定了大庆地区土壤的基本性质,即具有温带平原土壤系列的基本特点。根据土壤普查资料,大庆市土壤共分 6 个土类,13 个亚类、13 个土属,28 个土种。
(四)植被
大庆市天然植被主要由草甸草原、低地盐化草甸和沼泽构成。草甸草原是松嫩平原的主要组成部分,分布在漫岗、缓坡地和低平地上,植物主要以中早生的多年生草本植物为建群种,并以丛生和根茎型禾草占优势。禾本科主要有羊草、贝加尔针茅、野古草、隐子草和洽草等;豆科有兴安胡枝子、细叶胡枝子、五脉山薰豆、首箱、草木裤、山野豌豆等,杂草类主要有篙属、萎陵属杂草。植被盖度多在65%以上,草层平均厚度50 cm左右,亩产干草约100~150 kg。此类草场是畜牧生产主要割草场和放牧地。低地盐化草甸在大庆市有一定面积的分布,多处在地势低洼地带,与草甸草原植被呈镶嵌分布。植被由盐中生和早中生禾草、杂草类组成,主要植物有星星草、碱茅、羊草、芦苇、野黑麦、盐生凤毛菊、碱蓬、碱高等,植被盖度60-80%,草层平均高55 cm,亩产干草70 kg。此类草地主要作为放牧场。沼泽植被在大庆市有小面积分布,主要在长年积水或季节性积水的内地闭流洼地、无尾河散流低地和江滩洼地,植物主要有芦苇、小叶樟、三棱草、苔草等组成,芦苇是最常见的类型,植被盖度在80-100%,生长高度150~250 cm,产量很高,主要用于造纸工业。除了占优势的草本植物外,在西部风沙土区还有野生的蒙古杏、榆树等树种分布,现已遭受严重破坏。沿江地区还有天然的山杏、榆树、灌木柳等。
不过目前,大庆市天然植被己有很大一部分被开垦为农田,并在村镇周围和农田边缘种植了大量的杨树。保持天然植被的地段多为干早贫膺的沙地、较重的盐碱地以及沼泽地等。另有一部分植被由于油田开发而受到严重破坏。
(五)水文
1.降水
大庆市夏季降水量丰沛,冬季降水稀少。多年平均降水量为380~470 mm,最大降水量为664 mm,最小降水量为213 mm。年内降水量分配不均,主要集中在7~8月份,约占全年降水量的55%。大气降水明显表现为年际变化大、年内分配不均,并呈现夏季丰水、冬季枯水、春秋过渡的特点。
2.地表水
大庆市地表水资源表现为明显的闭流区特征。境内湖泊、泡沼星罗棋布,但很多泡沼多为碱性泡子,碱性强、盐分含量高,未经处理不能做灌溉用水。市区内无天然河流,松花江、嫩江从西南部边缘通过。省内两条最大的无尾河——乌裕尔河和双阳河的尾部逐渐消失在林甸和杜蒙县的大片苇塘和湿地中,大气降雨都汇集到低洼处,形成许多季节性沼泽地,全市有常年水泡208个,其中市区有156个。地表水系由引水系统、排水系统和诸多泡沼组成。引水系统包括三条以嫩江水位水源的北部、中部、南部引嫩工程和相应的蓄水工程组成,蓄水工程主要包括大庆水库、红旗水库、龙虎泡水库、北湖、东湖等。日供水能力117万m3。排水系统有南线排水和东线排水组成,东线由石化总厂污水管线进入清肯泡,南线主要是指安肇新河排水系统。
3.地下水
大庆市已探明地下有四个含水系统,即主要由第四系林甸组、泰康组及第三系大安组、白垩系明水组构成。因含水层受古沉积环境影响,其结构特征、埋藏条件、补给、径流条件差异很大,各含水层富水性差别较为明显。总体而言,含水厚度在10~40 m之间,顶板埋深为35~60 m,一般单井出水量为20~50 t/h,地下水可开采量为每年9.6亿m3。
大庆市各含水层为低矿化度重碳酸氢钠(NaHCO3)型水,但主要指标有明显的差异。在含水层之间,总溶解性固体由高到低依次为大安组、泰康组、林甸组、明水组,总硬度由高到低依次为泰康组、林甸组、明水组、大安组,锰含量由高到低依次为明水组、泰康组、林甸组、大安组,氟含量由高到低为林甸组、泰康组、大安组、明水组,pH值由高到低依次为明水组、林甸组、大安组、泰康组。总的情况分析,明水组水质最好,大安组水质次之,第四系、泰康组水质一般。在平面分布上的总体情况是,大庆长垣以东地区水质好于以西地区。
(六)石油天然气
大庆市位于松辽盆地的中心部位,是中生代至新生代时期的一个大沉积盆地,地下有丰富的石油天然气资源。截至 2001 年底,共发现探明石油地质储量 56.2 亿t,已动用地质储量 47.9 亿t,已开发的含油面积 2123.77 km2,占大庆市总面积的 41.59%。大庆市天然气资源也较为丰富,天然气地质储量 548.22 亿m3。
二、大庆市水土环境变化影响、状态和后果分析及环境地质指标研究
综观大庆市水土环境恶化的各种相关因素,其主要成因为:大庆市地处松嫩平原腹地,地质环境脆弱;油田的开发、建设活动加剧了市区水质和土壤的污染,造成区域地下水位持续大幅下降,导致土地资源流失,土地利用结构发生变化等一系列水土环境问题。
(一)气象
大气降水情况表现为年际变化大、年内分配不均的特征,并呈现夏季丰水、冬季枯水、春秋过渡的特点。夏季受东南季风的影响降水量丰沛,占全年降水量的60%左右;冬季在干冷东北风控制下降水稀少,仅占全年的4%~6%,见表7-7、7-8。
表7-7 大庆市区代表站降水量系列丰枯评定表
表7-8 大庆市区主要代表站多年平均降水量分配表
对于潜水含水层,水位变化受降雨影响较大,丰水位出现在8~9月份,枯水期多出现在4~5月份,图7-2是市区一潜水含水层地下水位与降雨量的关系曲线图。
(二)水文地质
大庆市含水层主要由第四系林甸组、泰康组及第三系大安组、白垩系明水组构成。因含水层受古沉积环境影响,其结构特征、埋藏条件、补给、径流条件差异很大,各含水层富水性差别较为明显,根据地下水含水层特征及埋藏条件可将区域内地下水分为富水区、中等富水区、弱富水区和贫水区四个区域,以大庆长垣为界,将规划区分为西部含水层系统及东部含水层系统,东部明水组缺失边界以南为东南部含水层系统。
图7-2 地下水位与降雨量的关系曲线
1.齐齐哈尔组潜水含水层
岩性为冲积和湖相沉积的细粉砂层。在低平原地区发育,岩性为黄土状亚粘土、亚粘土、粉细砂,潜水含水层底板埋深一般在5.0~30.0 m之间。赋存孔隙潜水,含水层厚度2.50~8.50 m,水位埋深2.5~8.3 m,渗透系数0.6~3.2 m/d,单井涌水量<100 m3/d,水质类型为低矿化淡水-微咸水。
2.大兴屯组潜水含水层
岩性为冲积相沉积的地层。在区域高平原地区发育,岩性为黄土状亚粘土、亚粘土、粉细砂,赋存孔隙潜水,含水层厚度0.50~5.50 m,水位埋深3.5~6.5 m 渗透系数0.8~2.5 m/d,单井涌水量<100 m3/d,水质类型为低矿化淡水-微咸水。
3.林甸组承压含水层
主要由河流相沉积细砂、砂砾石组成。除大庆长垣顶部缺失外,油田大部分地区都有分布,以油田西部发育最好。油田东部只有龙凤—卧里屯一带分布。在油田西部,埋深深度和厚度均自东向西,自南向北加深增厚,在前进水源以南地区逐渐变薄。厚度一般都在10.0 m以上,大部分地区都在20.0~60.0 m之间。少数在75~80 m之间。含水层颗粒粗大,分选较好,有效孔隙度大,透水性强,富水性较强。300 mm井管单井出水量为3615~5462 m3/d。林甸组含水层是规划区主要开采层位之一,其原始静水位埋深在3.0~10.0 m之间,目前,在降落漏斗范围内,水位埋深在15~25.42 m之间。水质类型为低矿化度的重碳酸钠型水。
4.泰康组承压含水层
岩性主要是含砾细砂和含砾中粗砂,自上而下由细变粗,呈明显河流相沉积。上部以中细砂和粉细砂为主,底部为厚层状含砾中粗砂。含水层只分布于大庆油田的西侧地区,与上覆第四系砂砾石层之间有一层分布不稳定的亚土、粘土和粉砂交互层,沉积发育比较稳定,厚度为5.0~20.0 m,且分布不稳定粘土或亚粘土互层相隔,沉积缺失而形成天然的“天窗”。通过弱透水层和“天窗”,使第四系林甸组含水层与该含水层相连通,水利联系较为密切,可视为同一含水层系统。
5.第三系大安组孔隙承压含水层
该含水层受沉积构造运动影响,分布不稳定,含水层较薄,厚度在3.0~8.0 m之间,含水层岩性为含砾砂岩,胶结松散,颗粒较细,孔隙较小,富水性略差。单井出水量为800~1000 m3/d。矿化度为240~660 mg/l,水质类型为重碳酸钠型水。
6.白垩系明水组孔隙承压含水层
又分为明水组二段承压含水层和明水组一段承压含水层。前者沉积时受构造运动影响,分布不稳定,多以透镜体分布。含水层单层较多,一般2~10层。单层厚度在3.0~26.0 m之间,累计厚度在10.0~80.0 m之间,局部最厚可达100 m。含水层岩石颗粒较细,孔隙较小,富水性略差。单井出水量为430~1700 m3/d。矿化度为300~700 mg/l,水质类型为重碳酸钠型水。后者与明水组二段含水层平面分布范围基本一致,含水层沉积特征受构造运动的影响很小,分布稳定性较好,特别是其上部含水层呈连续分布,沉积发育良好。含水层单层数较明水组二段少,一般为1~8个单层,单层厚度在3.0~29.0 m之间。含水层累计厚度为在5.0~55.0 m之间,局部地区最厚可达66.5 m。明水组一段含水层发育较为稳定、厚度为20 m左右,灰黑色泥质砂岩,砂岩分为上下两部分。其中上部发育良好,单层厚度较大,区域分布十分稳定,岩石颗粒较粗,有效孔隙度较大,富水性较强。而下部则发育较差,分布也不稳定,在三肇凹陷东部,发育相对较好。在龙凤、东水源地区,该含水层在油田开发初期可喷出地面10余m。目前,漏斗范围内最大降深在地面以下50 m。单井开采量为400~1000 m3/d,矿化度为300~800 mg/l,总硬度为96~500 mg/l(以CaCO3计)。
(三)地表水质
地表水是大庆市水资源的重要组成部分。大庆市的地面水体主要由江河、“三引水系”、自然泡沼、人工湖库和排水渠系共五部分组成。由于大庆以石油开采和石油化工为主体产业结构特点,结合大庆地区地表水体中的主要超标项目,选择了DO、COD、BOD5、挥发酚、CN-、石油类、总砷、六价铬、总镉、氨氮10个为地表水环境质量评价因子。
江河:由表7-9可见,区内松嫩两江,仅在中部引嫩干渠渠首及肇源站段为Ⅲ类地表水体,其他站段为Ⅳ级水体。江水的环境质量主要受到沿途纳污及江水自净条件的影响。从北部拉哈站段水体为4.6级,到中部引水渠首江水由于自净作用综合级数变为3.60级,至江桥站段由于途中接纳了齐齐哈尔市的污水排放使江水综合级数上升到4.14级。至古恰,松花江接纳库里泡4.87级的排水后江水由4.10级上升为4.69级。各断面环境监测资料统计表明,松嫩两江主要超标项目是化学耗氧量、生化需氧量、石油类物质。乌裕尔河和双阳河因受其上游各县污水排放的影响,水质较差。其综合级数分别为5.79和5.38级。属Ⅴ类地表水体。主要超标项目有化学耗氧量、生化耗氧量和石油类物质。
引水系统:中部引嫩干渠和北部引嫩总干渠质量分别为Ⅲ级(3.67级)和Ⅳ级(4.6级)。大庆水库和红旗水库为Ⅲ级地表水体。综合级数分别是3.31级和3.9级。据不同水期的监测资料分析,大庆水库枯、平、丰水期综合级数变化明显,主要表现为枯水期水质最差,丰水期水质较好,可达Ⅱ类地表水标准。
排水渠:安肇新河和西部排水干渠为大庆市排水主干系统,并汇合于大同,而后注入库里泡。排水系统承泄大庆市的城市污水和工业废水。安肇新河源于王花泡滞洪区,与东排干,中央排干和兴隆排干构成东部排水系统并串联于中内泡。主要接纳萨尔图区、龙凤区和红岗区及大同区的部分污水。水质较差。综合级数显示,东排干为4.93级,中央排干为5.84级,安肇新河为5.44级。西部排水总干渠北起大庆水库,南到民荣泡南端入安肇新河,全103.4km。设计流量10m3/s。具有油田排水,工业排水、农田灌溉等功能。西部排水干渠北部水质较好,基本符合Ⅲ级地表水体标准,其间串联于哑葫芦泡,东卡梁泡和八百垧泡后,接受了让胡路区、红岗区和大同区的污水排入,几个断面的综合级数都在5.8级以上,污染较为严重。
湖泡:大庆地区湖泊众多,是地表水环境系统的重要组成部分,多数湖泊具有纳污功能,城市污水、工业废水、地表径流是这些湖泡的主要补给,有的湖泊也有来自地下水潜水的补给,如莲环湖等,使这些湖泊终年不干,得以存在,湖泊是污水的汇集地,也是区内污染最为严重的区域。据断面监测,串联于安肇新河的中内泡1998年丰水期综合级数为8.06级,枯水期竟高达15.44级。大庆市与水环境密切相关的二十几个湖泡,除王花泡、八百垧泡、莲环湖、库里泡为Ⅳ级地表水体外,其余皆为Ⅴ级水体或超Ⅴ级水体。其中污染最为严重的是:老猪泡、中内泡、周瞎子泡、民荣泡、陈家大院泡。
表7-9 大庆市地表水体质量评价结果表
综上所述,大庆地区地表水体的污染以化学耗氧量、生化需氧量、石油类、有机污染为主,其次为总氮和总磷超标元素。地表水体污染的主要原因是城市生活污水和工业废水的排入造成的。其次地表径流水质也是影响湖泊、河流水质的一个重要方面。
(四)地下水水质
大庆油田自开发以来,就以地下水作为主要的供水水源,由于地下水的大量开采,在开采区形成大面积水位降落漏斗,漏斗中心位于前进水源地附近,而且随着开采量不断增加,漏斗中心水位降落也相应增大,在许多水源地,如前进水源、齐家水源、让胡路水源、喇嘛甸水源、红卫星水源等水源地的水化学成分发生了变化,地下水的、硬度、Fe和Mn均有升高的趋势。主要化学成分的情况如下:
1.Cl-离子
大庆市地下水中氯离子含量较低,大部分为Ⅰ级水,小于地下水环境质量标准规定的Ⅰ级水(50mg/L)。Ⅱ级水分布在齐家水源、喇化水源、西水源喇嘛甸水源一带。
2离子
大庆市地下水中硫酸根含量大部分较低,为Ⅰ级水,低于地下水环境质量标准规定的50mg/l。Ⅱ级水分布在杏二水源、南二水源,龙凤水源等地。Ⅲ级水主要分布在齐家水源地、西水源和让湖路水源地。只在喇化、西水源、喇嘛甸水源的个别井点达到Ⅳ级和Ⅴ级水。
3.Fe离子
大庆市地下水中铁离子的含量普遍较高,多数井点达到了Ⅳ级和Ⅴ级,即超过饮用水水质标准(0.3mg/l)。铁的分布基本分成三个区,西部地下水中铁含量较高,为Ⅴ级水,中部铁含量主要为Ⅳ级水,而东部地下水中铁含量相对较低,其中北水源、东水源、龙凤水源至农牧厂一带的地下水中铁含量较低,为Ⅰ级水,是白垩系明水组含水层。红卫星水源、喇嘛甸水源中部分井点及大同等地的地下水为Ⅳ级水,西部地区铁含量普遍较高。
4.Mn离子
根据锰含量的高低,可将大庆市地下水分为东西两个区。西区锰含量较高,多数为Ⅳ级水,个别地方为Ⅰ级水,如林甸的庆丰等地;而东部地区地下水中锰含量较低,大多为Ⅰ级水,如北水源、东水源、龙凤水源至农牧厂一带的明水组含水层,长垣西侧的西水源、红卫星水源、南水源、南二水源、前进水源等水源地部分井点为Ⅰ级水。
5离子
大庆市地下水中硝酸根含量大部分为Ⅰ级水,小于2mg/l。
6.F-离子
氟离子含量基本分为两个区,西部地区含水层中含量较低,大部分为Ⅰ级水,包括绿色草原、胡吉吐莫、古龙、新肇、古恰等地,林源、新华、大兴和肇源等地也为Ⅰ级水,而东部一些地区氟含量较高,为Ⅳ级水甚至Ⅴ级水。
7.TDS
大庆市地下水中溶解性总固体含量低的Ⅰ级水(<300mg/l)主要分布在明水组的庆宾馆、九厂深、一厂作业一带及肇源的个别地区,如源3。西部地区主要为Ⅱ级水,即TDS介于300~500mg/l。Ⅲ级水主要分布大同及杏二水源等地。只是在个别地方为Ⅳ级或Ⅴ级水,如喇化水源地、喇嘛甸水源地等。
8.硬度
大庆市西部地区地下水硬度含量介于150~350mg/l,为Ⅱ级水。
(五)地下水位
大庆市区是地下水开采的集中区域,由于大庆市无江无河缺乏地表水资源,开发初期主要以开发地下水作为主要的供水水源。在集中开采区先后建立地下水水源46座,经过40多年的开采,已形成东西两个降漏漏斗。
西部漏斗区:主要开采目的层为第四系林甸组和第四系泰康组含水层,先后建成地下水水源地26座,由于集中开采形成南北长约104 km,宽40 km的降落漏斗,漏斗影响面积为4000 km2,从动态分析可以发现,水量和水位呈直线的相关,漏斗的分布直接受地下水开采量控制,漏斗中心水位已经由最初的地面以下9 m,下降至现在的45.6 m,平均每年下降0.96 m(图7-3、表7-10)。开采区在1972年开采量达约1.0亿m3时,地下水位埋深19.62 m,使地下水位下降9~14 m,地下水降落漏斗开始扩大,从1972年起开采量逐年增加,到1976年开采量达1.48亿 m3,降落漏斗影响面积2500 km2,开采强度达5920m3/km2·年,漏斗中心水位埋深达29.50 m,此时降漏斗迅速发展面积扩大,1986年地下水开采2.0亿m3,漏斗中心水位埋深达34.24 m,从1986~1988年之间,开采量减少,到1988年开采量为1.7亿 m3,漏斗中心水位相应有所回升,漏斗中心水位埋深33.28 m,1989年以后地下水开采量逐年增加,漏斗水位又随之下降,到1996年达2.4亿m3,水位埋深为45.6 m,水位总下降约30 m,1997年地下水开采量为2.3亿m3,形成北起林甸花园乡,南到采油七厂,西起新店,东到大庆长垣西侧,漏斗中心位于独立屯水源及相邻地区降落漏斗,漏斗面积4000 km2,开采强度达6.57×103 m3/km2·年。
东部漏斗区:地下水主要开采目的层为明水组白垩系含水层,有集中开采水源10座,开采区1970年上开采量达0.28亿m3,地下水位埋深25.00 m,地下水降落漏斗扩大,到年开采量达0.32亿m3,漏斗中心水位达33.50m,年以后逐年增加开采量,1992年开采量达0.38亿m3,漏斗中心水位持续下降为42 m,到1997年水位下降到53.4m,开采强度达6.51万m3/km2·年,形成了北起青龙山奶牛场,南到安达畜牧农场,东起安达中本乡,西至缺乏边界的长约50 km,东西宽30 km的降落漏斗1560 km2,见图7-4、表7-11。
图7-3 西部开采区开采量与水位变化的关系
表7-10 西部漏斗区水源井开采量与水位的变化关系统计表
图7-4 东部开采区开采量与水位变化的关系
表7-11 东部漏斗区水源井开采量与水位的变化关系统计表
(六)土地利用结构
2001 年大庆市区耕地面积 2042.16 km2,占总土地面积的 39.96%,牧草地面积 1486.97km2,占总土地面积的 29.10%,水域面积 431.96 km2,占总土地面积的 8.45%,建设用地 400.86km2,占总土地面积的 7.84%,未利用地733.34 km2,占总土地面积的 14.35%。与 1990 年相比(表7-12),11年期间耕地面积净增 285.1 km2,年增长率 1.48%,牧草地面积减少 85.39 km2,平均每年递减 0.49%,水域面积减少 51.54 km2,年递减率 0.96%,建设用地增加 105.82 km2,年增长率 3.26%,未利用地减少 258.56 km2,平均每年递减2.37%。1979年到1990 年期间,耕地增加 314.61km2,平均年增长 1.98%,牧草地减少 933.37km2,平均每年以 3.10%的速度减少,水域面积增加78.94 km2,年均增长 1.63%,建设用地增加 149.98 km2,年均增长 8.62%,未利用地增加 398.98 km2,年均增加 5.61%。其中各区1990、2001年土地利用情况见表7-13、表7-14。
表7-12 大庆市区土地利用类型统计表
表7-13 大庆市区1990年各区土地利用类型统计表
表7-14 大庆市区2001年各区土地利用类型统计表
1979 到 1990 年的 11 年期间研究区耕地主要去向是转化为草地、居民点和未利用地,同时大量的草地转变为耕地、水域、居民点和未利用地,未利用地一少部分转变为居民点和耕地,大部分变成草地和水域用地。土地利用类型复杂的转换过程,说明这一时期区域土地利用十分剧烈,人类的干扰活动是强烈而持续的。主要是由于大庆油田正处于中兴鼎盛时期,一方面要保证产量,油井不断加密,占用了大量的耕地、草地,被占用的土地建了油井和输油管线以后不能再耕种和放牧形成了大面积的未利用地。另一方面大量人口的迁入和人口的自然增长使得城市建设的步伐不断加快,油田占用土地以后,剩余的草地或被城市用地占用,或者被开垦成耕地。而水域面积的增加主要是来自于草地和未利用地,则可能是由于气候条件适宜,降水量增加导致地势低洼处形成季节性积水的原因。居民点和建设用地主要转变为草地和未利用地,主要原因是在油田区内建造的临时居民点搬迁出油田。
1990 年到 2001 年期间,土地利用类型的相互转化,主要表现为:草地面积因开垦耕地和城市建设占用继续减少,耕地面积继续增加,城市建设用地增加,20世纪80年代形成的未利用地有一部分转化为天然草地,大面积的天然水域萎缩变为未利用地,这与20世纪90 年代大庆气候逐渐变干有着密切的关系。
(七)土壤质量
大庆市及周边地区的土壤中,石油烃均值含量达78.01 mg/kg(背景值为48.36mg/kg),污染率为60%;挥发酚均值0.048 mg/kg(背景值为0.032mg/kg),污染率为48%;总铅均值为24.34mg/kg(背景值为15.42mg/kg),污染率为43%;硫化物均值为0.13mg/kg(背景值为0.07mg/kg),污染率25%。上述资料明显反映了大庆及周边地区的土壤已遭受不同程度的污染。虽然石油类污染物在土壤中经3~5a即可降解;但这些物质可通过食物链进入人畜体内,从而危害人体健康。这些污染物来源于油田开发区和石油化工区的钻井及输油管线冒漏、井喷漏;石油化工厂的泄漏及废气废液的排放和原材料堆放等;另外石油钻井的废液泥浆也是土壤污染的一个重要因素。每口井产生的废液约60~80m3,20世纪80年代以前全部就地掩埋;以后2万多口井液按80%回收,剩余140万m3井液就地掩埋。这些井液毒性大,颗粒小,呈黏稠状,对土壤构成了严重威胁。
(八)水资源衰减
大庆全市地表水域面积42万hm2,地下水可开采量每年为9.6亿m3。由于采油过程中过量开采地下水,造成区域地下水位下降,在大庆长垣附近已经产生两个区域性水位下降漏斗,漏斗面积分别为:4500 m2、1600 m2(包括林甸、杜蒙、安达部分),中心水位下降分别为36.00 m、44.00 m。由于漏斗范围内承压含水层压力较小,可能导致地面沉降和地面塌陷。据不完全统计,自20世纪70年代开始,大庆市地下水水位年均下降16~19m。至2005年底,西部地区地下水水位埋深达48173m,而原始静水位埋深仅210~1010m。
(九)土地退化
大庆市土地沙化、盐碱化及草原“三化”问题突出。据大庆市人大常委会数据,全市2.12万km2土地,荒漠化土地面积已达8279 km2,占土地总面积的47%。由于土地沙化和盐碱化,使土壤黑土层变薄,有机质含量降低。据调查,大庆垦前黑土层厚度为40cm,垦后黑土层厚度仅为15~20cm。大庆现有1034万亩草原,由于连年干旱,载畜量过大,原生土壤高含碱性,“三化”面积已达810万亩,占总面积的78%。
(十)水文
湿地面积萎缩问题显现。据黑龙江日报2006年报道,大庆市拥有湿地120万公顷,占全国已知湿地总面积的3.12%,接近1/30。大庆湿地发育的环境基础为流速缓慢的河溪、淡水湖泊及相邻的沼泽地,湿地类型属河流及河漫滩沼泽湿地、湖泊及周边沼泽湿地、草甸沼泽湿地。其中沼泽、苇地等 14.43 万亩,水域 41.87万亩。主要分布在肇源县、杜蒙县、林甸县和市区。由于油田的深度开发,油田范围不断向外延伸,大量的湿地被开发利用。随着石油化工的发展,污染排放物加剧,“落地油”及钻井过程中产生化学泥浆和洗井废水使得许多湿地变成了泥浆地、排污地、废水排放池等。土壤、植被及湿地水体的大面积污染。
(十一)水土环境污染
大庆是我国著名的油都,在贡献高额利润的同时,也对当地水土环境产生了极大的破坏。最为突出的表现就是水土环境污染。2004年度,大庆市排放废水12414.0万t,其中工业废水7799.04万t,生活污水4615万t。工业废水中主要的污染物有COD、BOD5、SS、氨氮、石油类、硫化物、挥发酚、CN、砷、六价铬、铅等。由于境内无江无河,除每年约7000万t的污水经净化处理重新利用外,其余全部排入地表泡沼中,致使分布于大庆市境内大部分纳污泡沼皆为V级水或劣V级水。另外,对纳污泡渠一定范围内浅层地下水样的检测发现,色度、浊度、总硬度、铁、锰、氟化物、高锰酸盐指数、溶解性总固体超标。其中,铁、锰、氟化物超标反映受原生地质环境影响。而色度、浊度、总硬度和高锰酸盐指数超标,表明受人为活动所致。
水体受到污染的同时,土壤污染也不容小觑。油田石油化工区、石油开发区土壤污染比较严重,污染物排量大、浓度高、毒性强,且在土壤中存留时间长,难于降解,并能通过食物链在人体内蓄积而影响人体健康。污染来源主要有钻井泥浆、钻井岩屑及石油开采过程中的落地原油。1995年,区域土壤污染调查时发现,主要的污染物为石油总烃、酚类和硫化物及重金属元素铅、铜等。2005年,重点对石油开发区内的土壤中(面积196km2)重金属元素展开调查,发现污染程度呈增加趋势。
车用压缩天然气 气质检测间隔时间是多少
一、矿场油气集输的任务及内容
矿场油气集输是指把各分散油井所生产的油气集中起来,经过必要的初加工处理,使之成为合格的原油和天然气,分别送往长距离输油管线的首站(或矿场原油库)或输气管线首站外输的全部工艺过程。
概括地说,矿场油气集输的工作范围是以油井井口为起点,矿场原油库或输油、输气管线首站为终点的矿场业务;主要任务是尽可能多的生产出符合国家质量指标要求的原油和天然气,为国家提供能源保障;具体工作内容包括油气分离、油气计量、原油脱水、天然气净化、原油稳定、轻烃回收、含油污水处理等工艺环节。
二、矿场油气集输流程
矿场油气集输流程是油气在油气田内部流向的总说明。它包括以油气井井口为起点到矿场原油库或输油、输气管线首站为终点的全部工艺过程。矿场油气集输流程可按多种方式划分。
(一)按布站级数划分
在油井的井口和集中处理站之间有不同的布站级数,据此可命名为一级布站流程、二级布站流程和三级布站流程。
一级布站流程是指油井产物经单井管线直接混输至集中处理站进行分离、计量等处理。该流程适用于离集中处理站较近的油井。
二级布站流程(见图7-2)是指油井产物先经单井管线混输至计量站,在计量站分井计量后,再分站(队)混输至集中处理站处理。该流程适用于油井相对集中、离集中处理站不太远、靠油井压力能将油井产物混输至集中处理站的油区,一般是按采油队布置计量站。
图7-2 二级布站集输流程
三级布站流程是指油井产物在计量站分井计量后,先分站(队)混输至接转站,在接转站进行气液分离,其中的液相经加压后输至集中处理站进行后续处理,气相由油井压力输至集中处理站或天然气处理厂进行处理。该流程适用于离集中处理站较远、靠油井压力不能将油井产物混输至集中处理站的油区。
总体而言,二级布站流程是较合理的布站方式,其特点是密闭程度较高,油气损耗较少,能量利用合理,便于集中管理。但在实际应用中,要根据具体情况具体分析确定布站方式。
(二)按加热降黏方式划分
我国油田生产的原油多数是“三高(高含蜡、高凝点、高黏度)”原油,一般采用加热方式输送。按加热方式的不同可分为井口加热集输流程、伴热集输流程(蒸汽伴热或热水伴热)、掺合集输流程(掺蒸汽、掺热油、掺热水、掺活性水)和井口不加热集输流程等。
1.井口加热集输流程
井口加热集输流程如图7-3所示。油井产物经井口加热炉加热后,进计量站分离计量,再经计量站加热炉加热后,混输至接转站或集中处理站。这是目前我国油田应用较普遍的一种集输流程。
图7-3 井口加热集输流程
1—井口水套加热炉;2—计量分离器;3—计量站水套加热炉;4—计量仪表
2.伴热集输流程
伴热集输流程是用热介质对集输管线进行伴热的集输流程,按所用的伴热介质不同可分为蒸汽伴热集输流程和热水伴热集输流程。
图7-4为蒸汽伴热集输流程,通过设在接转站内的蒸汽锅炉产生蒸汽,用一条蒸汽管线对井口与计量站间的混输管线进行伴热。
图7-4 蒸汽伴热集输流程
1—生产、计量分离器;2—除油分离器;3—缓冲油罐;4—外输油泵;5—外输加热炉;6—锅炉;7—水池
图7-5为热水伴热集输流程,通过设在接转站内的加热炉对循环水进行加热。去油井的热水管线单独保温,对井口装置进行伴热;回水管线与油井的出油管线一起对油管线进行伴热。
这两种流程比较简单,适用于低压、低产、原油流动性差的油区的伴热集输,但需有蒸汽产生设备或循环水加热炉,一次性投资大,运行中热损失大,热效率较低。
3.掺合集输流程
掺合集输流程是将具有降黏作用的介质掺入井口出油管线中,以达到降低油品黏度、实现安全输送的目的。常用作降黏介质的有蒸汽、热稀油、热水和活性水等。
图7-6为掺稀油集输流程。稀油经加压、加热后从井口掺入油井的出油管线中,使原油在集输过程中的黏度降低。该流程适用于地层渗透率低、产液量少、原油黏度高的油井,但设备较多,流程复杂,需要有适于掺合的稀油。
图7-5 热水伴热集输流程
1—生产、计量分离器;2—除油分离器;3—缓冲油罐;4—外输油泵;5—外输加热炉;6—缓冲水罐;7—循环水泵;8—循环水加热炉
图7-6 掺稀油集输流程
1—来油计量阀组;2—加热炉;3—三相分离器;4—脱水泵;5—沉降罐;6—脱水加热炉;7—电脱水器;8—净化油罐;9—稀油分配计量阀组;10—稀油加热炉;11—外输泵;12—流量计;13—稀油缓冲罐;14—掺油泵;15—天然气去气体净化站;16—净化原油外输;17—稀油进站;18—含油污水去污水站
图7-7为掺活性水集输流程。通过一条专用管线将热活性水从井口掺入油井的出油管线中,将原油变成水包油型的乳状液,使原来油与油、油与管壁间的摩擦变为水与水、水与管壁间的摩擦,以达到降低油品黏度的目的。该流程适用于高黏度原油的集输,但流程复杂,管线、设备易结垢,后端需要增加破乳、脱水等设施。
4.井口不加热集输流程
图7-8为井口不加热集输流程,是随着油田开采进入中、后期,油井产液中含水不断增加而采用的一种集输方法。由于油井产液中含水的增高,一方面使采出液的温度有所提高,另一方面使采出液可能形成水包油型乳状液,从而使得输送阻力大为减小,为井口不加热、油井产物在井口温度和压力下直接混输至计量站创造了条件。
图7-7 掺活性水集输流程
图7-8 井口不加热集输流程
(三)按布管形式划分
按通往井口管线的根数可分为单管集输流程、双管集输流程和三管集输流程等。此外,还有环形管网集输流程、枝状管网集输流程、放射状管网集输流程、米字形管网集输流程等。
单管集输流程是指井口与计量站之间只有一条油井产物混输管线,如图7-3所示的加热集输流程。双管集输流程是指井口与计量站之间有两条管线,一条输送油井产物,另一条输送热介质,实现降黏输送,如图7-7所示的掺活性水集输流程。三管集输流程是指井口与计量站之间有三条管线,一条输送油井产物,另外两条实现热介质在计量站与井口之间的循环,如图7-5所示的热水伴热集输流程。
环形管网集输流程如图7-9所示,是用一条通往接转站或集中处理站的环形管道将油区各油井串联起来,实现二级或一级布站。该流程多用于油田外围油区的集输。
(四)按油气集输系统密闭程度划分
按油气集输系统密闭程度可划分开式集输流程和密闭集输流程。
开式集输流程是指油井产物从井口到外输之间的所有工艺环节当中,至少有一处是与大气相通的,如图7-10中的6、9、13等储油罐处。这种流程运行管理的自动化水平要求不高,参数容易调节,但油气的蒸发损耗大,能耗大。
密闭集输流程是指油井产物从井口到外输之间的所有工艺环节都是密闭的,如图7-11所示。这种流程减少了油气的蒸发损耗,降低了能耗,但由于整个系统是密闭的,若局部出现参数波动,会影响到整个系统,要求运行管理的自动化水平较高。
图7-9 单管环形管网集输流程
图7-10 开式集输流程
1—计量分离器;2—液体流量计;3—气体流量计;4、5—一级、二级油气分离器;6、9、13—储油罐;7、11—一级、二级脱水泵;8、15—脱水、外输加热炉;10—污水泵;12—电脱水器;14—外输油泵
图7-11 密闭集输流程
1—计量分离器;2—液体流量计;3—气体流量计;4、5—一级、二级油气分离器;6、10—压力缓冲罐;7—脱水泵;8、12—脱水、外输加热炉;9—电脱水器;11—外输油泵
(五)海上油田集输流程
目前通用的海上油气生产和集输系统流程主要有半海半陆式集输流程和全海式集输流程两种模式。
半海半陆式油气集输流程适用于离岸近的中型油田和油气产量大的大型油田。它是由海上平台、海底管线和陆上终端构成等部分组成的,如图7-12所示。
全海式集输流程是指油气的生产、集输、处理、储存均是在海上平台进行的,处理后的原油在海上直接装船外运。此流程适用于远离岸边的中小型海上油田。
图7-12 半海半陆式油气集输流程
三、油气初加工处理
在石油的开采过程中,伴随着原油的采出,同时也采出一定量的伴生气、水、泥沙等。在实际生产过程中,需对油井采出液进行必要的初加工处理,从而得到合格的原油和天然气。
(一)油气分离
油气分离是油田油气处理的首要环节,它是借助于油气分离器来实现油、气、水、砂等的分离。
油气分离器是油气田用得最多、最重要的设备之一,其类型很多。在生产实际过程中,应用较多的是卧式两相油气分离器和卧式油气水三相分离器等。
1.卧式油气两相分离器
卧式两相油气分离器的结构如图7-13所示,流体由油气混合物入口进入分离器,经入口分流器后,流体的流向和流速发生突变,使油气得到初步分离。在重力的作用下,分离后的液相进入集液部分,在集液部分停留足够的时间(我国规定:一般原油在分离器内的停留时间为3min,起泡原油为5~20min),使液相中的气泡上升到液面进入气相。集液部分的液相最后经原油出口流出分离器进入后续的处理环节。来自入口分流器的气体则分散在液面上方的重力沉降部分,使气体所携带的粒径较大的油滴(>100μm)靠重力沉降到气—液界面。未沉降下来的油滴则随气体进入除雾器,在除雾器内聚结、合并成大油滴,靠重力沉降到集液部分,脱出油滴的气体经气体出口流出分离器。
图7-13 卧式油气两相分离器
1—油气混合物入口;2—入口分流器;3—重力沉降部分;4—除雾器;5—压力控制阀;6—气体出口;7—出油阀;8—原油出口;9—集液部分
2.卧式油气水三相分离器
两相油气分离器只是简单地将油井产物分成气液两相。实际上,油井产物是油、气、水等的混合物,在油气分离的同时,也要实现水的分离。
图7-14 卧式油气水三相分离器
1—油气混合物入口;2—入口分流器;3—重力沉降部分;4—除雾器;5—压力控制阀;6—气体出口;7—挡油板;8—出油口;9—出水口;10—挡水板;11—油池;12—水室
卧式三相油气水分离器可以实现油气水的分离,其结构如图7-14所示,流体由油气混合物入口进入分离器,入口分流器把油气水混合物大致分成气、液两相。液相由导管引至油水界面以下进入集液部分,在集液部分油水实现分离,上层的原油及其乳状液从挡油板上层溢出进入油池,经出油口流出分离器。水经挡水板进入水室,通过出水口流出分离器。气体水平通过重力沉降部分,经除雾器后由气出口流出。
(二)原油脱水
石油的开采,伴随着产生大量的水。原油中的含水大都以游离水和乳化水两种形态存在,它们给油气集输、储运乃至石油加工带来了许多危害,因此,必须对原油进行脱水。
乳化水是水与原油形成的乳状液,其物理性质发生了很大的变化,因而是脱水的主要对象。乳化水通常有两种类型,一种是油包水型(W/O)乳化水,其水为分散相、油为连续相;另一种是水包油型(O/W)乳化水,其油为分散相、水为连续相。
原油脱水的方法很多,主要有热沉降脱水、化学脱水、离心法脱水、粗粒化脱水、电脱水等。实际脱水过程中,最常用的是热化学破乳脱水法和电脱水法。
1.热化学破乳脱水
热化学破乳脱水就是将含水原油加热到一定的温度,并向原油中加入少量的化学破乳剂,从而破坏油水乳状液的稳定性,促使水滴碰撞、聚结、沉降,以达到油水分离的目的。
2.电脱水
原油电脱水方法适合于处理含水量在30%左右的油包水型原油乳状液。它是将原油乳状液置于高压直流或交流电场中,在电场力的作用下,促使水滴合并、聚结,形成较大粒径的水滴,实现油水的分离。
原油电脱水过程中,水滴在电场中是以电泳聚结、偶极聚结、振荡聚结三种方式进行聚结合并的。其中,在交流电场中,水滴以偶极聚结、振荡聚结方式为主;在直流电场中,水滴以电泳聚结方式为主,偶极聚结方式为辅。
(三)原油稳定及轻烃回收
1.原油稳定
原油是多组分的碳氢化合物的混合物。在原油集输过程中,由于操作条件的变化,会使原油中的部分轻组分挥发,造成原油蒸发损耗。为了降低原油的蒸发损耗,充分利用油气资源,保护环境,提高原油储运过程中的安全性,须采用一系列工艺措施,将原油中挥发性强的轻组分(主要是C1~C4)脱出,降低原油的挥发性和饱和蒸气压,使原油保持稳定,这一工艺过程称为原油稳定。
原油稳定的方法很多,主要有闪蒸稳定法、分馏稳定法、大罐抽气法等。
闪蒸稳定法是将未稳定的原油加热到一定温度,然后减压闪蒸分离得到相应的气相和液相产物。这是目前应用较广的方法。闪蒸稳定法的原理流程如图7-15所示。
图7-15 闪蒸稳定法的原理流程图
1—换热器;2—加热炉;3—闪蒸塔;4—压缩机;5—冷凝器;6—分离器;7—泵
分馏稳定法是根据原油中各组分挥发度不同的特点,利用精馏的原理将原油中的C1~C4组分脱出,达到稳定的目的。分馏稳定法的典型流程如图7-16所示。分馏稳定法的主要设备是稳定塔,稳定塔是一个完全的精馏塔,塔的上部为精馏段,下部为提馏段,塔顶有回流系统,塔底有重沸系统。这种方法设备多,流程较复杂,但稳定原油的质量好。
图7-16 分馏稳定法的典型流程图
1—换热器;2—稳定塔;3—冷凝器;4—分离器;5—回流罐;6—泵;7—重沸器
大罐抽气法是利用原油处理站内的沉降脱水油罐,在罐顶安装抽气管线,利用压缩机自罐中抽出油蒸气,经增压、冷却、计量后输送至轻烃回收装置进行回收。
2.轻烃回收
轻烃是指天然气中所含的C3以上的烃类混合物,它们在天然气中以气态的形式存在,通过不同的工艺方法将它们以液态的形式回收称为轻烃回收。
轻烃回收的方法较多,常用的有固体吸附法、液体吸收法及低温分离法等。
固体吸附法是利用固体吸附剂(如活性炭、活性氧化铝等)对各种烃类的吸附能力不同,而使天然气中的各组分得以分离的方法。
液体吸收法是利用天然气中各组分在液体吸收油(如石脑油、煤油等)中的溶解度不同,而使天然气中的各组分得以分离的方法。
这两种方法是早期轻烃回收较常用的方法,由于投资高、能耗大、收率低,现已逐步为低温分离法所替代。
低温分离法是利用天然气各组分冷凝温度不同的特点,在降温过程中使各组分得以分离的方法。这种方法的特点是使气体获得低温。通常低温获得的方法主要有制冷剂制冷、膨胀机膨胀制冷及两者混合使用的制冷方法等。
(四)油田气的净化
油田气含有多种杂质,如砂粒、岩屑等固体杂质,水、凝析油等液体杂质,水蒸气、硫化氢、二氧化碳等气体杂质。固体杂质的存在,会导致管道、设备、仪表等的磨损,严重时会堵塞管道,降低输送量,影响生产安全;水蒸气的存在,不仅降低了管线的输送能力和气体热值,而且当输送压力和环境条件变化时,还可能使水蒸气从天然气流中析出,形成液态水、冰或天然气的固体水合物,从而增加管路压降,严重时堵塞管道;酸性气体H2S或CO2的存在,会加剧管线、设备的腐蚀,影响化工产品的质量。由此可见,气体净化是油田气长距离输送或进行轻烃回收前必不可少的环节。气体净化主要采用以下几种方法:
1.吸附法
吸附法是利用油田气中的不同组分在固体吸附剂表面上积聚特性不同的原理,使某些组分吸附在固体吸附剂表面,进行脱除的方法。
2.吸收法
吸收法是用适当的液体吸附剂处理气体混合物以除去其中的一种或多种组分的方法。如用液态烃吸收气态烃,用水吸收CO2,用甘醇脱水或用多乙二醇甲醚脱硫,用碱液吸收CO2等。在操作过程中,对吸收后的溶液可进行再生,使溶剂得到循环使用。
3.冷分离法
由于多组分混合气体中各组分的冷凝温度不同,在冷凝过程中高沸点组分先凝结出来,这样就可以使组分得到一定程度的分离。冷却温度越低,分离程度越高。例如低温分离法脱水、膨胀机制冷脱水等都是冷分离方法。这一方法流程简单,成本低廉,特别适用于高压气体。
4.直接转化法
直接转化法是通过适当的化学反应,使杂质转化成无害的化合物留在气体内,或者转化成比原杂质易于除去的化合物,达到净化目的。
四、油气计量
油气计量是指对石油和天然气流量的测定。在油气田生产过程中,从井口到外输间主要分为油气井产量计量、外输流量计量和交接数量计量三种。
(一)油气井产量计量
油气井产量计量是指对生产井所生产的油量和气量的测定。目的是了解油气井生产状态,为油气井管理、油气层动态分析提供资料数据。
对于产量高的油气井,通常是每口井单独设置一套计量装置,称为单井计量。对于产量低的油气井,通常是8~12口油井共用一套计量装置,并对每口油井生产的油、气、水进行计量,油井日产量要定期、定时轮换进行计量。这种计量方式称为多井计量。
油气井产量计量方法有两种:分离计量法和多相流量计量法。分离计量法是利用油气分离器先将油井产物分离成气相和液相,或者气、油和水相,然后分别计量各相的流量。由于计量精度受到分离质量的影响,且油气难以完全分离,因此,该法计量精度差,而且附属设备多,占地面积大。多相流量计量法是自动分析检测油井产物的组成和流量,进而测定油井的产油量、产气量和产液量。它是将分离、计量合成一体完成,具有体积小、精度高、操作方便等特点,是计量发展的方向。
(二)外输流量计量
外输流量计量是对石油和天然气输送流量的测定。它是输出方和接收方进行油气交接经营管理的基本依据。计量要求有连续性,仪表精度高。外输原油一般采用高精度的流量仪表连续计量出体积流量,再乘以密度,减去含水量,求出质量流量。综合计量误差一般要求在±0.35%以内。这就要求原油流量仪表要有较高的精度,同时也应定期进行标定。
(三)交接数量计量
交接数量计量是指油田内部各采油单元之间进行的油品输送流量的计量。它是衡量各采油单元完成生产指标情况,进而进行经济核算的依据。从计量方法上看,交接数量计量与外输流量计量基本相似,但由于这种计量是发生在油田内部各采油单元之间的,因此其计量精度不如外输流量计量要求高。
五、含油污水处理
目前,我国多数油田已进入开发晚期,大多采用注水方式开发,从而导致油井采出液含水量升高(有些油田的综合含水率已达90%)。在初加工处理过程中,油井采出液将脱出大量的含油污水,如果含油污水处理不合理就进行回注和排放,不仅会使油田地面设施不能正常运作,而且会因地层堵塞带来危害,影响油田安全生产,同时也会造成环境污染,因此必须合理地处理、利用含油污水。
(一)含油污水的特点
1.污水含油
污水含油量一般为1000 mg/L左右,少部分油田污水含油量高达3000~5000 mg/L,而且同一污水站瞬时污水的含油量也具有一定的波动性。一般来讲,污水中的油是以浮油(油珠直径大于100μm)、分散油(油珠直径10~100μm)、乳化油(油珠直径0.1~10μm)和溶解油(油珠直径小于0.1μm)四种形态分布于水中的。
2.污水含盐
含油污水中含有多种离子,主要包括Ca2+、Mg2+、K+、Na+、Fe2+等阳离子和Cl-、HCO3-、CO23-、SO24-等阴离子。这些离子之间相互结合,生成各种盐类。在一定的条件下,CaCO3、CaSO4、MgCO3等溶解度较小的盐类易形成沉淀。它们如悬浮在水中,会使水浑浊;如沉积在管壁上,会引起结垢。
3.污水含气
污水中溶解有O2、H2S、CO2等多种有害气体。其中,O2是很强的去极化剂,能使阳极的铁原子失去电子,生成Fe2+或Fe3+,进一步生成Fe(OH)3沉淀。同样,CO2、H2S等酸性气体也能与铁原子结合生成FeCO3垢或FeS沉淀。它们都会大大加剧金属设备和管线的腐蚀、结垢。
4.污水含悬浮固体
污水中的悬浮固体是指污水中所含的固体悬浮物,其颗粒直径范围在1~100μm之间,主要包括泥沙、各种腐蚀产物及垢、细菌、胶质、沥青质等。这些悬浮固体悬浮在水中,会使水浑浊;附着在管壁上,会形成沉淀,引起管壁腐蚀;回注于储油层,会使孔隙堵塞,影响油井产量。
综上所述,污水中的成分复杂,其显著特点是腐蚀性强、结垢快。生产中,应重点针对这类问题加以分析,采取有效措施加以处理。
(二)含油污水处理流程
含油污水处理工艺流程因污水水质、净化处理要求不同而异。按照处理工艺过程,大致可将其划分为自然除油—混凝沉降—压力过滤流程、压力式聚结沉降分离—过滤流程、浮选式流程及开式生化处理流程等。
1.自然除油—混凝沉降—压力过滤流程
自然除油—混凝沉降—压力过滤流程如图7-17所示。从脱水转油站送来的含油污水经自然除油初步沉降后,投加混凝剂进入混凝沉降罐进行混凝沉降。然后进入缓冲罐,经提升泵加压后进入压力滤罐进行压力过滤。滤后水再加杀菌剂,得到合格的净化水,外输用于回注;自然除油罐和混凝沉降罐回收的原油进入污油罐,经油泵加压输送至油站;对压力滤罐进行反冲洗时,反洗水泵从反洗水罐提水,反冲洗排水进入回收水罐,经回收水泵均匀地加入自然除油罐中再进行处理。
该流程处理效果良好,对污水含油量、水量变化波动适应性强,但当处理规模较大时,压力滤罐数量较多、操作量大,处理工艺自动化程度稍低。
图7-17 自然除油—混凝沉降—压力过滤流程
2.压力式聚结沉降分离—过滤流程
压力式聚结沉降分离—过滤流程如图7-18所示。它加强了流程前段除油和后段过滤净化。脱水站送来的污水,若压力较高,可进旋流除油器;若压力适中,可进接收罐除油。为了提高沉降净化效果,在压力沉降之前增加一级聚结(亦称粗粒化)除油,使油珠粒径变大,易于沉降分离。抑或采用旋流除油后直接进入压力沉降。根据对净化水质的要求也可设置一级过滤和二级过滤净化。
图7-18 压力式聚结沉降分离—过滤流程
压力式聚结沉降分离—过滤流程处理净化效率较高,效果良好,污水在处理流程内停留时间较短,系统机械化、自动化水平稍高,但适应水质、水量波动能力稍低。
3.浮选式流程
浮选式流程如图7-19所示。该流程首端大都采用溶气气浮,再用诱导气浮或射流气浮取代混凝沉降设施,后端根据净化水回注要求,可设一级过滤和精细过滤装置。
图7-19 浮选式流程
浮选式流程处理效率高,系统自动化程度高,现场预制工作量小,广泛应用于海上采油平台污水系统;在陆上油田,广泛用于稠油污水处理。但该流程动力消耗大,维护工作量稍大。
4.开式生化处理流程
开式生化处理流程如图7-20所示。它是针对部分油田污水采出量较大、不能完全回注、需要部分处理达标排放的实际设计的。含油污水经过平流隔油池除油沉降,再经过溶气浮选池净化,然后进入一级、二级生物降解池和沉降池,最后经提升泵提升至滤池进行砂滤或吸附过滤达标外排。
图7-20 开式生化处理流程图
总之,上述几种流程是目前含油污水处理较常用的流程。当然,由于各油田污水的具体情况不同,上述流程也并非是绝对的,实际应用中,应根据具体的情况选择合适的流程。
燃气工程项目申请报告
现在中石油的输出的天然气每天都会给下游的接受单位一份气质分析报告。里面的内容很详细。包括天然气里所有的组成部分各占体积的百分比是多少,每立方二氧化硫的含量,水露点,以及高位发热量是多少……
加气站(CNG)不定期的会从场站里拿这些气质分析报告去记录的。
燃气工程项目申请报告
燃气是气体燃料的总称,它能燃烧而放出热量,供城市居民和工业企业使用。下文是我为大家整理的燃气工程项目申请报告,欢迎大家借鉴。更多详情,请关注。
燃气工程项目申请报告
第一章 申报单位及项目概括
一、项目申报单位概括
包括姓名申报单位的主营业务、经营年限、资产负债、股东构成、主要投资项目、现有生产能力等内容。
二、项目概括
包括拟建项目的建设背景、建设地点、主要建设内容和规模、产品和工程技术方案、主要设备选型和配套工程、投资规模和资金筹措方案等内容。
第二章 发展规划、产业政策和行业准入分析
一、发展规划分析
拟建项目是否符合有关的国民经济和社会发展总体规划、专项规划、区域规划等要求,项目目标与规划内容是否衔接和协调。
二、产业政策分析
拟建项目是否符合有关产业政策的要求。
三、行业准入分析
项目建设单位和拟建项目是否符合相关行业准入标准的规定。
第三章 资源开发及综合利用分析
一、资源开发方案
资源开发类项目,包括对金属矿、煤矿、石油天然气矿、建材矿以及水(力)、森林等资源的开发,应分析拟开发资源的开发量、自然品质、赋存条件、开发价值等,评价是否符合资源综合利用的要求。
二、资源利用方案
包括项目需要占用的重要资源品种、数量及来源情况;多金属、多用途化学元素共生圹、伴生矿以及油气混合矿等的资源综合利用方案;通过对单位生产能力主要资源消耗量指标的对比分析,评价资源利用效率的先进程度;分析评价项目建设是否会对地表(下)水等其它资源造成不利影响。
三、资源节约措施
阐述项目方案中作为原材料的各类金属矿、非金属矿及水资源节约的主要措施方案。对拟建项目的资源消耗指标进行分析,阐述在提高资源利用效率、降低资源消耗等方面的主要措施,论证是否符合资源节约和有效利用的相关要求。
第四章 节能方案分析
一、用能标准和节能规范
阐述拟建项目所遵循的国家和地方的合理用能标准及节能设计规范。
二、能耗状况和能耗指标分析
阐述项目所在地的能源供应状况,分析拟建项目的能源消耗种类和数量。根据项目特点选择计算各类能耗指标,与国际国内先进水平进行对比分析,阐述是否符合能源准入标准的要求。
三、节能措施和节能效果分析
阐述拟建项目为了优化用能结构、满足相关技术政策和设计标准而采用的主要节能降耗措施,对节能效果进行分析论证。
第五章 建设用地、征地拆迁及移民安置分析
一、项目选址及用地方案
包括项目建设地点、占地面积、土地利用状况、占用耕地情况等内容。分析项目选址是否会造成相关不利影响,如是否压覆矿床和文物,是否有利于防洪和防涝,是否影响通航及军事设施等。
二、土地利用合理性分析
分析拟建项目是否符合土地利用规划要求,占地规模是否合理,是否符合集约和有效使用土地的要求,耕地占用补充方案是否可行等。
三、征地拆迁和移民安置规划方案
对拟建项目的征地拆迁影响进行调查分析,依法提出拆迁补偿的原则、范围和方式,制定移民安置规划方案,并对是否符合保障移民合法权益、满足移民生存及发展需要等要求进行分析论证。
第六章 环境和生态影响分析
一、环境和生态现状
包括项目场址的自然环境条件、现有污染物情况、生态环境条件和环境容量状况等。
二、生态环境影响分析
包括排放污染物类型、排放量情况分析,水土流失预测,对生态环境的影响因素和影响程度,对流域和区域环境及生态系统的综合影响。
三、生态环境保护措施
按照有关环境保护、水土保持的政策法规要求,对可能造成的生态环境的影响因素和影响程度,对治理方案的可行性、治理效果进行分析论证。
四、地址灾害影响分析
在地质灾害易发区建设的项目和易诱发地质灾害的项目,要阐述项目建设所在地的地质灾害情况,分析拟建项目诱发地质灾害的`风险,提出防御的对策和措施。
五、特殊环境影响
分析拟建项目对历史文化遗产、自然遗产、风景名胜和自然景观等可能造成的不利影响,并提出保护措施。
第七章 经济影响分析
一、经济费用效益或费用效果分析
从社会资源优化配置的角度,通过经济费用效益或费用效果分析,评价拟建项目的经济合理性。
二、行业影响分析
阐述行业现状的基本情况以及企业在行业中所处地位,分析拟建项目对所在行业及关联产业发展的影响,并对是否可能导致垄断等进行论证。
三、区域经济影响分析
对于区域经济可能产生重大影响的项目,应从区域经济发展、产业空间布局、当地财政收入、社会收入分配、市场竞争结构等角度进行分析论证。
四、宏观经济影响分析
投资规模巨大、对国民经济有重大影响的项目,应进行宏观经济影响分析。涉及国家经济安全的项目,应分析拟建项目对经济安全的影响,提出维护经济安全的措施。
第八章 社会影响分析
一、社会影响效果分析
阐述拟建项目的建设及运营活动对项目所在地可能产生的社会影响和社会效益。
二、社会适应性分析
分析拟建项目能否为当地的社会环境、人文条件所接纳,评价该项目与当地社会环境的相互适应性。
三、社会风险及对策分析
针对项目建设所涉及的各种社会因素进行社会分析,提出协调项目与当地社会关系、规避社会风险、促进项目顺利实施的措施方案。
延伸阅读:工程项目的特征1. 针对工程项目的管理特点进行WBS工作分解结构
每个工程可以根据自己工程的实际WBS工作分解结构情况,运用?工程中标?、?项目评估?、?中期管理?等阶段的程序在系统存储的公共工程标准细目数据库中指定属于本工程所能用到的相关分布项目信息。将这些分布项目信息继续分解为更细的细目、构造物并指定定额。
2. 对于?材料?、?定额?数据的管理也是本系统的特色功能之一
系统中把材料分为两种类型:原材料、配合比材料。其中,配合比材料是由某些原材料通过一定的配比量组合而成的一种特殊的材料。系统管理者可通过《材料信息维护》、《企业标准配合比信息维护》两支程序分别对?原材料?、?配合比材料?的标准值(单位、单价等)进行管理。
3、定额的重要性
定额是计算构造物成本的关键依据。根据定额的类别系统中将定额细分为以下3种类型:人工、材料、机械。系统管理者可通过《企业定额信息维护》程序对定额的上述4个类型方面的数据的标准值进行维护。标准值作为企业基础数据,为后期实际应用提供基准依据。
4. 方便快捷的合同管理及成本计算
此处对工程合同进行管理,将工程细目与合同一一对应,同时系统将根据评估阶段细目的人工、材料、机械评估使用量,对合同各项信息进行调整。将定额拆分为?主材?、?地材?、?劳务费?等各项统计栏位进行计算。
5. 完善的工程队评价机制
根据管理者提供的统一的考核及权重模板,使用者可从三种评价方式(平日考核、记名评价、不记名评价)中任意选择某种方式对某工程队的进行评价。
6. 材料的进出场及库存管理
系统针对工程项目中,材料的成本占整个工程成本比重很大这一特点,专门定制了对材料使用情况的进出场管理,以及材料库存信息管理。
7. 灵活的工程变更体系
当在工程施工过程中发现评估阶段所进行的WBS工作分解不能满足当前施工需求时,可使用?中期评估?阶段程序进行工程细目的变更,新增的变更重新拟定合同并进行对下计价。对于新增的变更,如果还没有进行对下分配合同,那么系统提供变更还原功能,以灵活处理变更中各项信息。
8. 实时了解工程完成情况及拨(借)款信息情况
管理者可通过合同调整情况、对下计价情况了解工程目前进展状况,以及拨(借)款信息。全面、及时的掌握工程进度、资金使用等信息。
9. 全面的统计分析能力
目前系统提供了涵盖?工程评估?、?对下承包?、?对下计价拨款?三大方面,涉及?工程成本预算?、?评估收入?、?评估工料机使用量?、?劳务承包?、?主地材使用情况?、?对下验工计价?、?工程奖罚明细?、?拨(借)款信息?、?材料进出场情况?以及?综合对下数据统计情况?等情况的27张报表供使用者全面了解经过本系统统计分析后的工程项目各项数据的具体参数及详细信息。
;
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。