1.矿产储量计算的计算方法

2.石油技术可采储量的计算

3.地质储量计算方法有哪些

4.什么是可采储量及剩余可采储量?

5.油气储量是怎样计算的?

天然气储存系统_天然气动态储量计算方法是什么意思呀

矿产资源储量估算方法

估算方法,是指矿产资源埋藏量估算过程中,各种参数及其资源储量的计算方法和相应软件的统称。由于矿产资源赋存方式千差万别,开发利用方式也不尽相同,因此,必须要研究适合不同矿种的矿产资源储量估算方法。矿产资源划分为三大类:第一类是固体矿产资源,包括金属矿产、非金属矿产和煤;第二类是石油、天然气、煤层气资源;第三类是地下水资源。

据计算单元划分方式的不同,又可分为断面法(亦称剖面法)和块段法两种。

断面法进一步分为平行断面法、不平行断面法。

平行断面法又分为:水平断面法和垂直断面法。

垂直断面法,又分为勘探线剖面法和线储量计算法。

矿产储量计算的计算方法

石油的世界总储量,悲观地估计为2700亿吨,乐观地估计为6500亿吨。在油砂和油页岩中还有7000亿吨。但能经济地回采的约有1750亿吨。按悲观估计,回采量最少约1000亿吨。照目前世界年耗油量30亿吨推算,可用130年左右。但是全世界已查明的石油可采储量仅879亿吨。如每年开采30亿吨,不到30年就可用光。天然气储量约1800亿吨到4000亿吨。全世界天然气的可采储量为70多亿立方米。

有一种看法是,目前全世界可开采的天然气总储量高达281亿立方米,也只满足170年的需求。煤炭目前已证实的储量为14000亿吨。按目前全世界的耗煤量计算,可用500年。

还有一种估计是,全世界煤储量的预测量是10万亿吨,但可供采掘的只有约7000亿吨。以每年开采量34亿吨计算,只能维持200年。铀的可供作核燃料的矿产资源储量为400万吨。仅西方世界已证实有209万吨。即使核技术迅速发展,这个储量也要到快中子增殖反应堆迅速生产出比自身所消耗的还要多的核燃料之后很长一段时间才用完。世界水力资源的理论蕴藏量38亿千瓦,可开发的有11万千瓦/小时。

石油技术可采储量的计算

按照矿块体积几何形状的不同,储量计算方法可分为:

①多角形法,又称最近地区法,以每一勘探工程见矿厚度为中心,推向各相邻工程距离的二分之一处,形成一多棱柱形体矿块;

②三角形法,以每3个相邻勘探工程见矿的平均厚度为三角棱柱体矿块的高;

③开采块段法,以坑道工程为界,把矿体切割成若干板形矿块;

④地质块段法,按地质构造和开采条件相同的原则划分矿块;

⑤断面法,又称剖面法,是将每两条相邻勘探线剖面间的矿体作为一个矿块;

⑥等高线法,对产状和厚度稳定的沉积矿床,以矿层顶板或底板等高线图为基础,将矿层倾角相近的地段划分为一个矿块;

⑦等值线法,利用矿体等厚线图或矿体厚度与品位乘积等值线图,将两等值线间的矿体划为一个矿块。矿块划分以后,视其几何形状选用公式计算体积和储量。

20世纪60年代以来,国际上采用电了计算机计算矿产储量,使地质统计学等计算量大而结果较为精确的计算方法得以推广应用,它与传统储量计算方法的区别是:不单纯以矿块中的工程求得储量计算的参数(如品位)来计算该矿块的储量,而是考虑矿体中样品与周围样品分布的空间位置(包含方向和距离)的相关关系,来计算矿块的品位和储量。这些方法在中国正在用已知矿床作实例,研究它的适用条件和范围。

石油及天然气地质储量计算

主要采用容积法。石油的计算公式为

式中N为石油地质储量(万吨);A为含油面积(平方千米);h为平均有效厚度(米);Φ为平均有效孔隙度;Swi为平均油层原始含水饱和度;ρ0为平均地面原油密度(吨每立方米);B0i为平均原始原油体积系数。

地层原油中的原始溶解气地质储量Gs(亿立方米)的计算公式为

Gs=10-4N·Rsi

式中Rsi为原始溶解气油比(立方米每吨)。

此外,物质平衡法是利用生产资料计算石油动态地质储量的方法。计算油田的探明储量,除应分别计算石油及溶解气的地质储量外,还要计算地质储量中能够采出获得社会经济效益的可采储量。可采储量不仅与油藏类型、储层物性、流体性质、驱动类型等自然条件有关,而且与采油时布井方式、注入方式、采油工艺、油田管理水平以及经济条件等人为因素有关。随着油田勘探开发工作的进展,经济技术条件的改善,应合理选择有关资料、参数和经验公式,定期计算或复核可采储量。

天然气的地质储量一般用容积法

其计算公式为

式中G为气田的原始地质储量(亿立方米);A为含气面积(平方千米);h为平均有效厚度(米);Φ为平均有效孔隙度;Swi为平均原始含水饱和度;T为气层温度(开尔文);Tsc为地面标准温度(开尔文);Psc为地面标准压力(兆帕);Pi为气田的原始地层压力(兆帕);Zi为原始气体偏差系数。

将容积法求得的天然气地质储量乘以天然气采收率,求得可采储量。

地下水水量计算

评价地下水水量是指人类可资利用的地下水水量。根据需要,结合地区的水文地质条件,分别计算地下水的补给量(单位时间内流入含水层的地下水总量)、储存量(储存于含水层内的重力水体积)、可开采量。作为供水水源地,主要计算可开采量。可开采量是指在一定的技术经济条件下,采用合理开采方案和合理开采动态,在整个开采期间不明显袭夺已有水源地,不发生危害性的环境地质问题的前提下,允许开采的水量,其中包括开采时可夺取的天然补给量或排泄量、开采条件下的激发补给量、可利用的储存量和人工补给量。地下水既不同于固体矿产,它具有流动性,也不同于石油天然气矿产,它还具有恢复性。因此评价时必须在查明地下水的补给、径流、排泄条件和预测它在开采过程中可能发生水量水质变化的情况下,分别按水源地水文地质条件,含水介质类型(孔隙性介质、岩溶性介质、裂隙性介质),水力性质(潜水、承压水),边界条件,含水层的不均匀性,地下水动态观测时间系列的长短,开采布井方式等,选择相应公式计算水文地质参数和地下水水量。

地质储量计算方法有哪些

根据中华人民共和国石油天然气行业标准 《石油可采储量计算方法》 (SY/T5367-1998),可采储量的计算方法共10类18种方法,每种方法都有各自的适用范围和局限性。应根据油藏开发阶段和开发方式等具体条件选取适用的方法。本部分对砂岩油藏可采储量的常用计算方法进行详细阐述。其他类型油藏可采储量的计算方法可参阅中华人民共和国石油天然气行业标准 《石油可采储量计算方法》及有关书籍。

1. 开发初期油田可采储量的计算方法

开发初期是指油田的建设期或注水开发油田中低含水期。此阶段,油田动态资料少,油藏开采规律不明显。计算可采储量的方法有经验公式法、类比法、流管法、驱油效率-波及系数法、数值模拟法及表格法。矿场上经常采用的计算方法是经验公式法、类比法及表格法。

(1) 经验公式法

经验公式法是利用油藏地质参数和开发参数评价油藏采收率,然后计算可采储量的简易方法。应用该法时,重要的是了解经验公式所依据的油田地质和开发特征以及参数确定方法和适用范围。

美国石油学会采收率委员会阿普斯 (J. J. Arps) 等人,从1956年开始到1967年,综合分析和统计了美国、加拿大、中东等产油国的312个油藏的资料。根据72个水驱砂岩油田的实际开发资料,确定的水驱砂岩油藏采收率的相关经验公式为:

油气田开发地质学

式中:ER——采收率,小数;φ——油层平均有效孔隙度,小数;Swi——油层束缚水饱和度,小数;Boi——原始地层压力下的原油体积系数,小数; ——油层平均绝对渗透率,10-3μm2;μwi——原始条件下地层水粘度,mPa·s;μoi——原始条件下原油地下粘度,mPa·s;pi——原始油层压力,MPa;pa——油藏废弃时压力,MPa。

上式适用于油层物性好、原油性质好的油藏。

1977~1978年B·C·科扎肯根据伏尔加-乌拉尔地区泥盆系和石炭系沉积地台型42个水驱砂岩油藏资料,获得以下经验公式:

油气田开发地质学

式中:μR——油水粘度比;Cs——砂岩系数;Vk——渗透率变异系数;h——油层平均有效厚度,m;f——井网密度,ha/口;其余符号同前。

该经验公式复相关系数R=0.85,适用于下列参数变化范围:μR=0.5~34.3;

油气田开发地质学

(109~3200) ×10-3μm2;Vk=0.33~2.24;h=2.6~26.9m;Cs=0.51~0.94;f=7.1~74ha/口。

1978年,我国学者童宪章根据实践经验和统计理论,推导出有关水驱曲线的关系式,并将关系式和油藏流体性质、油层物性联系起来,推导出确定水驱油藏原油采收率的经验公式:

油气田开发地质学

式中: —束缚水条件,油的相对渗透率与水的相对渗透率比值;μo——地层原油粘度,mPa·s;μw——地层水粘度,mPa·s。

上式的优点是简单,式中两个主要因素:一是油水粘度比,很易测定;另一个因素油、水相对渗透率比值,可以根据相对渗透率曲线间接求得。

1985年我国石油专业储量委员会办公室利用美国和前苏联公布的109个和我国114个水驱砂岩油藏资料进行了统计研究。利用多元回归分析,得到了油层渗透率和原油地下粘度两者比值 (影响采收率的主要因素),与采收率的相关经验公式:

ER=21.4289(K/μo)0.1316

上式适合我国陆相储层岩性和物性变化大、储层连续性差及多断层的特点,计算精度较高。

(2) 驱油效率-波及系数法

驱油效率可以用岩心水驱油实验法和分析常规岩心残余油含量法。

1) 岩心水驱油实验法:用岩心进行水驱油的实验,是测定油藏水驱油效率的基本方法之一,可直接应用从油层中取出的岩心做实验,也可以用人造岩心做实验。具体方法是将岩心洗净烘干后,用地层水饱和,然后用模拟油驱水,直到岩心中仅有束缚水为止。最后用注入水进行水驱油实验,模拟注水开发油藏的过程,直到岩心中仅有残余油为止。水驱油效率为:

油气田开发地质学

式中:ED——水驱油效率,小数;Sor——残余油饱和度,小数;Soi——原始含油饱和度,小数。

2) 分析常规岩心残余油含量法:取心过程中,钻井液对岩心的冲洗作用,与注水开发油田时注入水的驱油过程相似。可以认为钻井液冲洗后的岩心残余油饱和度,与水驱后油藏的残余油饱和度相当。因此,只需要分析常规取心的残余油饱和度就能求出油藏注水开发时的驱油效率。即:

油气田开发地质学

式中:β——校正系数,其余符号同前。

原始含油饱和度的求取本章已有叙述。残余油饱和度的测定方法通常有蒸馏法、色谱法及干馏法。由于岩心从井底取到地面时,压力降低,残余油中的气体分离出来,相当于溶解气驱油,使地面岩心分析的残余油饱和度减小,所以应进行校正,β一般为0.02~0.03。

用分析常规岩心的残余油含量来确定水驱油效率,简便易行。但是实际上,取心过程与水驱油过程有差别,用残余油饱和度法求得的水驱油效率往往较油田实际值低。

上述两种方法求得的驱油效率乘以注水波及系数,即为水驱采收率。

波及系数是水驱油的波及体积与油层总体积之比。水驱波及系数与油层连通性、非均质性、分层性、流体性质、注采井网的部署等都有密切的关系。连通好的油层,水驱波及系数可以达到80%以上;连通差的油层和复杂断块油藏,往往只有60%~70%。

(3) 类比法

类比法是将要计算可采储量的油藏同有较长开发历史或已开发结束的油藏进行对比,并借用其采收率,进行可采储量计算。油藏对比要同时比较地质条件和开发条件,才能使对比结果接近实际。地质条件包括油藏的驱动类型、储层物性、流体性质及非均质性。开发条件包括井网密度、驱替方式及所采用的工艺技术等。

(4) 表格计算法

表格计算法是根据油气藏的驱动类型,参照同类驱动油藏的采收率,根据采收率估算的经验,给定某油藏的采收率值,估算其可采储量。

油气藏的驱动类型是地层中驱动油、气流向井底以至采出地面的能量类型。油气藏的驱动类型可分为弹性驱动、溶解气驱、水压驱动、气压驱动、重力驱动。油气藏的驱动类型决定着油气藏的开发方式和油气井的开采方式,并且直接影响着油气开采的成本和油气的最终采收率。所以一个油气田在其投入开发之前,必须尽量把油气藏的驱动类型研究清楚。

油气藏驱动类型对采收率的影响是很大的,但是同属一个驱动类型的油气藏,由于各种情况的千差万别,其采收率不是固定的,而是存在着一个较大的变化范围。表7-3给出油藏在一次采油和二次采油时,不同驱动类型采收率的变化范围。

表7-3 油藏采收率范围表

表7-3所列出油气藏不同驱动类型时采收率值的范围,是由大量已开发油气田所达到最终采收率的实际统计结果而得出的。油藏三次采油注聚合物等各种驱油剂的最终采收率范围,则是依据实验室大量驱替试验结果得出的。不论是实际油气田的统计值还是驱替试验结果,均未包括那些特低或特高值的情况。仅由表中所列的数值范围就可看出,油气藏不同驱动类型之间最终采收率相差很大,就是同一驱动类型的油气藏相差也悬殊。

(5) 流管法

流管法由于计算过程烦琐,矿场上不常用,因篇幅所限,此处不作介绍。

(6) 数值模拟法

数值模拟法适用于任何类型、任何开发阶段及任何驱替方式的油藏。开发初期,油藏动态数据少,难以校正地质模型,用数值模拟方法只能粗略计算油藏的可采储量。

2. 开发中后期可采储量的计算方法

开发中后期是指油田含水率大于40%以后,或年产油量递减期。开发中后期可采储量的计算方法主要有水驱特征曲线法、产量递减曲线法、童氏图版法。

(1) 水驱特征曲线法

所谓水驱特征曲线,是指用水驱油藏的累积产水量和累积产油等生产数据所绘制的曲线。最典型的是以累积产水量为纵坐标,以累积产油量为横坐标所绘制的单对数曲线。

根据行业标准SY/T5367-1998,水驱特征曲线积算可采储量共分为6种基本方法,加上童氏图版法,共7种方法。

1) 马克西莫夫-童宪章水驱曲线:此曲线常称作甲型水驱曲线,一般适用中等粘度(3~30mPa·s) 的油藏。其表达式为:

lgWp=a+bNp

可采储量计算中,以实际的累积产水量为纵坐标,以累积产油量为横坐标,将数据组点在半对数坐标纸上。利用上式进行线性回归,得到系数a和b。然后利用下式计算可采储量:

油气田开发地质学

计算技术可采储量时,一般给定含水率fw=98%,计算对应于含水率98%时的累积产油量即为油藏的技术可采储量。

2) 沙卓诺夫水驱曲线:沙卓诺夫水驱曲线适用于高粘度 (大于30mPa·s) 的油藏。表达式为:

lgLp=a+bNp

以油藏实际的累积产液量为纵坐标,以累积产油量为横坐标,数据组点在半对数坐标纸上,进行线性回归,得到上式中的系数a和b。同理给定含水率98%,计算油藏的可采储量,计算公式如下:

油气田开发地质学

3) 西帕切夫水驱曲线:此种曲线适用于中等粘度 (3~30mPa·s) 油藏。表达式为:

油气田开发地质学

对应的累积产油量与含水率的关系式为:

油气田开发地质学

4) 纳扎洛夫水驱曲线:此种水驱曲线适用于低粘度 (小于3mPa·s) 的油藏。其表达式为:

油气田开发地质学

对应的累积产油量与含水率的关系式为:

油气田开发地质学

5) 张金水水驱曲线:此种水驱曲线适用于任何粘度、任何类型的油藏。其表达式为:

油气田开发地质学

对应的累积产油量与含水率的关系式为:

油气田开发地质学

6) 俞启泰水驱曲线:俞启泰水驱曲线适用于任何粘度、任何类型的油藏。其表达式为:

油气田开发地质学

对应的累积产油量与含水率的关系式为:

油气田开发地质学

7) 童氏图版法:童氏图版法也是基于二相渗流理论推导出的经验公式,其含水率与采出程度的关系表达式为:

油气田开发地质学

以上七个公式中:Wp——累积产水量,104t;Np——累积产油量,104t;Lp——累积产液量,104t;fw——综合含水率,小数;R——地质储量采出程度,小数;ER——采收率,小数。

利用童氏图版法计算可采储量,首先是依据如下图版 (图7-14),将油藏实际的含水率及其对应的采出程度绘制在图版上,然后估计一个采收率值。最后由估计的采收率和已知的地质储量,计算油藏的可采储量。一般童氏图版法不单独使用,而是作为一种参考方法。

图7-14 水驱油田采收率计算童氏图版

前述1~6种方法均是计算可采储量常用的方法。但对某个油藏,究竟选取哪种方法合理,不能单纯凭油藏的原油粘度来选择方法。要根据油田开发状况综合考虑,避免用单一因素选择的局限性。一般的做法是:首先,根据原油粘度选择一种或几种计算方法,计算出油藏的可采储量和采收率。然后,参考童氏图版法,看二者的采收率值是否接近。若二者取值接近,说明生产数据的相关性好。但所计算的可采储量是否符合油田实际,还要根据油藏类型及开发状况进行综合分析。若经过分析认为所计算的可采储量不合理,则还要用其他方法进行计算。

(2) 产油量递减曲线法

任何一个规模较大的油田,按照产油量的变化,大体上可以将其开发全过程划分为3个阶段,即上产阶段、稳产阶段及递减阶段。但有些小型油田,因其建设周期很短,可能没有第一阶段。所述的3个开发阶段的变化特点和时间的长短,主要取决于油田的大小、埋藏深度、储层类型、地层流体性质、开发方式、驱动类型、开采工艺技术水平及开发调整的效果。一个油藏的产油量服从何种递减规律,主要是由油藏的地质条件和流体性质所决定的,开发过程中的调整一般不会改变油藏的递减规律。

递减阶段产油量随时间的变化,服从一定的规律。Arps产油量递减规律有指数递减、双曲递减及调和递减三大类。后人在Arps递减规律的基础上,对Arps递减规律进行了补充完善。中华人民共和国行业标准 《石油可采储量计算方法》 综合了所有递减规律研究成果,列出了用产油量递减曲线法计算油藏原油可采储量的4种计算方法。

1) Arps指数递减曲线公式

递减期年产油量变化公式:

Qt=Qie-D

递减期累积产油量计算公式:

油气田开发地质学

递减期可采储量计算公式:

油气田开发地质学

式中:Di——开始递减时的瞬时递减率,1/a;Qi——递减初期年产油量,104t/a;Qt——递减期某年份的产油量,104t/a;Qa——油藏的废弃产油量,104t/a。

递减期可采储量计算的步骤是:

第一步,以年产油量为纵坐标,以时间为横坐标,在半对数坐标纸上,绘制递减期的年产油量与对应的年份数据组,并进行线性回归,得到一条直线,直线方程式为:lgQt=lgQi-Dit。则直线截距为lgQi,直线斜率为-Di,从而求得初始产量Qi,递减率Di。

第二步,确定油藏的废弃产量Qa。计算技术可采储量时,一般以油藏稳产期的年产液量对应含水率98%时的年产油量为废弃产量。也可以根据开发的具体情况,根据经验,给定一个废弃产量。

第三步,由第一步所求的Qi,Di和第二步所求的Qa,代入递减期可采储量计算公式,即可求得油藏的递减期可采储量。递减期可采储量加上递减前的累积产油量就是油藏的可采储量。

2) Arps双曲递减曲线公式

递减期产油量变化公式:

油气田开发地质学

递减期累积产油量计算公式

油气田开发地质学

递减期可采储量计算公式:

油气田开发地质学

递减期可采储量计算的步骤如下:

第一步,求递减初始产油量Qi,初始递减率Di和递减指数n。产油量变化公式两边取对数得:

油气田开发地质学

给定一个,nDi值,依据上式,用油藏实际的产油量和对应年限数据组,进行线性回归。反复给定nDi值,并进行回归,直到相关性最好。此时,直线的截距为lgQi,直线斜率为-1/n。从而可求得Qi,n及Di值。

第二步,确定废弃产油量。

第三步,计算递减期可采储量。将第一步所求得的3个参数和废弃产油量代入递减期可采储量计算公式,便可求得递减期可采储量值。递减期可采储量加上递减前的累积产油量就是油藏的可采储量。

3) Arps调和递减曲线公式

Arps双曲递减指数n=1,就变成了调和递减曲线。

递减期产油量变化公式:

油气田开发地质学

递减期累积产油量计算公式:

油气田开发地质学

递减期可采储量计算公式:

油气田开发地质学

递减期可采储量计算的步骤如下:

第一步,求递减初始产油量Qi,初始递减率Di。把产油量变化公式与累积产油量计算公式组合成:

油气田开发地质学

累积产量与产量呈半对数线性关系。根据直线的截距和斜率,可求得Di,Qi值。

第二步,确定废弃产油量。

第三步,计算递减期可采储量。将第一步所求得的3个参数和废弃产油量代入递减期可采储量计算公式,便可求得递减期可采储量值。递减期可采储量加上递减前的累积产油量就是油藏的可采储量。

4) 变形的柯佩托夫衰减曲线Ⅱ

递减期产油量变化公式:

油气田开发地质学

递减期累积产油量计算公式:

油气田开发地质学

递减期可采储量计算公式:

油气田开发地质学

计算可采储量之前,首先要求得参数a,b,c。求参数常用且简便的方法如下:

首先,求得参数a和c。由递减期产油量变化公式和递减期累积产油量计算公式可得:

tQt+Np=a-cQt

根据上式,以tQt+Np为纵坐标,Qt为横坐标,进行线性回归,直线截距为a,斜率为-c。从而求得参数a和c。

然后,求参数b。将所求参数a和c代入累积产油量计算公式,以累积产油量Np为纵坐标,以1/(c+t)为横坐标,进行线性回归,则直线截距即为a,直线斜率即为要求的参数b。

什么是可采储量及剩余可采储量?

地质储量,1959年全国矿产储量委员会根据地质和矿产的研究程度及相应的用途所划分的一类储量。地质储量是指根据地质勘探掌握的资料,按照能源储藏形成的规律进行推算得出的储量[1]。

地质储量是指由地质勘探部门根据地质和成矿理论及相应调查方法所预测的矿产储量。这类储量的研究程度和可靠性很低,未经必要的工程验证,一般只能作为进一步安排及规划地质普查工作的依据[2]。

中文名

地质储量

外文名

geological reserves

定义

按照能源储藏规律推算出的储量

分类

表内储量和表外储量

快速

导航

分类

最新地质储量分类

矿井地质储量

简介

地质储量是指根据区域地质调查、矿床分布规律,或根据区域构造单元,结合已知矿产的成矿地质条件所预测的储量。这类储量的研究程度和可靠程度很低,未经必要的工程验证,一般只能作为进一步安排及规划地质普查工作的依据。在矿山设计及生产部门,为区别于生产矿山的三级矿量(又称生产矿量),一般都将矿山建设和生产以前,由地质勘探部门探明的各级矿产储量,统称地质储量。对于在矿山建设及生产过程中发现的新矿体的储量,有时也称地质储量。欧美各国的储量分级中,有时也将可能储量称作地质储量。前苏联的地质勘探工作中,有时把C2级储量也称地质储量,但有时又把根据地质勘探工作查明的矿床的总储量称地质储量。

分类

地质储量是在地层原始条件下,具有产油、气能力的储层中原油或天然气的总量。地质储量按开采价值划分为表内储量和表外储量。表内储量是指在现有技术经济条件下,有开采价值并能获得社会经济效益的地质储量。它相当于美国矿产分类级别中验证过的经济资源。表外储量是指在现有技术经济条件下开采不能获得社会经济效益的地质储量。它相当于美国矿产分类级别中验证过的次经济资源。当原油及天然气价格提高或工艺技术改进后,某些表外储量可转变为表内储量[3] 。

油气储量是怎样计算的?

石油及天然气可采储量是指一个油(气)田(藏)在当前工业技术条件下可采出的油(气)量。可采储量不仅与油(气)藏类型、储层物性、流体性质、驱动类型等自然条件有关,而且与布井方式、注入方式、采油工艺、油(气)田管理水平以及经济条件等人为因素有关。以探明程度区分的地质储量为基础,相应地亦可分为证实的、概算的和可能的石油(天然气)可采储量。可采储量(Reserves)的分类与地质储量(OOIP)的分类有一致性,但也有它的特殊性。按照SPE及世界石油大会标准,可采储量的分类也分为P1(Proven reserves)、P2(Probable reserves)、P3(Possible reserves),这与地质储量是一样的。可采储量的特殊性在于它与油田开发的生产状况和经济合理性紧密相连,特别是对证实的可采储量(P1)定义比较严格,不一定和地质储量的分类有一致性。如果按照美国证券交易委员会(SEC)的标准,假如已证实了的P1地质储量如果还闲置着,还没有开发方案,根据油气藏的地质因素预计的一次可采储量只能算入P2可采储量;如果考虑到该油藏有可能开展二次采油,但没有任何试验加以证实,这种二次采油增加的估算也可能算入P3的可采储量。只有经过试验证明了的、已经具有了开发方案并经过批准、已投入生产的才能算入已开发生产的P1可采储量。

中国石油天然气股份有限公司应用的可采储量体系技术可采储量 技术可采储量是指依靠现在的工业技术条件可能采出,但未经过经济评价的可采储量。通常以某一平均含水界限(如98%)、某一平均油气比(如2000立方米/吨或10000立方英尺/桶)、某一废弃压力界限或某一单井最低极限日采油(气)量为截止值计算的可采出油(气)量,这称为最终可采储量。如果考虑某一特定评价期(合同期)的总可采储量,是根据油井递减率动态法或数值模拟方法计算到评价期截止日的可采出油(气)量。

剩余可采储量 剩余可采储量是指一个油(气)田(藏)投入开发,并达到某一开发阶段,可采储量减去该阶段累计采出油(气)量的剩余值。

经济可采储量 经济可采储量是指经过经济评价认定、在一定时期内(评价期)具有商业效益的可采储量。通常是在评价期内参照油气性质相近著名的油(气)田发布的国际油(气)价和当时的市场条件进行评价,确认该可采储量投入开采技术上可行、经济上合理、环境等其他条件允许,在评价期内储量收益能满足投资回报的要求,内部收益率大于基准收益率(公司最低要求)。

一个国际合作开发的工程项目(合同区或油气田),经过经济评价认定具有商业价值的可采储量是该项目合作双方共同拥有的经济可采储量,称为合同区或油气田经济可采储量,该经济可采储量不包括合作前采出的累计油气量,也不包括合同期以后还可能采出的油气量。

权益的经济可采储量 在国际合作的油田开发项目中,任何一方按照双方合作合同规定并遵循国家有关法规,从某一方的角度来考察项目的经济效益,经过经济评价认定具有商业价值的可采储量是该方的权益经济可采储量。

在国际合作中,合同区或油气田评价的计算期是从双方合作油气田正常投产起,经过回收期、收益高峰期、收益衰减期,直至合同期终结为止。

不同评价期计算的经济可采储量可能发生动态性的变化。原来计算的经济可采储量由于后来的市场条件或开采条件恶化(如价格下降、成本增加、递减率加大、增加评价井后发现地质储量减少、油气井事故废弃等),经过重新评价有可能变少;原来认为没有经济价值的可采储量,由于后来技术、经济、环境等条件改善或政府给予其他扶持政策,经过重新评价有可能变为经济的可采储量。

油田好比是地下“油库”,气田好比是地下“气库”,油气田就好比是地下“油气库”了。油库的大小以装油多少来衡量,气库的大小以装气多少来衡量,油田的大小,是以含油的多少即储量来衡量的。世界上的油田形形、多种多样,只有“相似”而没有“相同”的,储量也相差悬殊。例如,世界排名第一的头号油田——沙特阿拉伯的加瓦尔油田,其可采储量高达114×108吨;世界排名第二的科威特的布尔干油田,可采储量也有105×108吨。不过,这种可采储量超过百亿吨的超级大油田,到目前为止,全世界只发现两个。原始地质储量超过20×108吨(相当可采储量6.8×108吨)的大型油田,世界上现有42个,我国大庆油田名列其中。而可采储量在0.06~1.3百万吨级的中小型油田,在世界油田中占绝大多数。

油气储量是油气田勘探最重要的成果,是油气田开发的物质基础,也是国家制定能源政策和国家投资的重要依据。地下没有“油海”、“油河”,油气是储存于岩石的孔隙、洞隙和缝隙之中的。由于储存条件复杂,使储存于地下的油气不能如愿以偿全部采到地面。因此,把油气储量分为两类:一类叫做地质储量,即地下油气田储集层中油气的实际储量;另一类叫可采储量,即在现有的经济、技术条件下,可以采到地面的油气储量。通常把可采储量与地质储量的比值称为采收率。当然,采收率越高越好。

在油气田勘探的各个阶段,都要进行储量计算。计算的方法有好几种,通常采用的是容积法。大家知道,油气储存在地下岩石的孔、洞、缝隙之中,所以容积法计算油气储量的实质是计算岩石孔隙中油气所占的体积,并把地下油气的体积换算成地面的重量(石油)或体积(天然气),这就是油气的储量。石油地质储量的计算公式为:

公式中的含油饱和度是指岩石孔隙中石油所占体积与孔隙体积相比的百分数。原油在地下油层中,因地层压力较大,溶有大量气体,体积增大;采到地面后,压力降低,气体从油中跑出,原油体积缩小。原油在地下的体积与地面体积之比,称为体积系数。

计算气田中天然气地质储量,与计算油田中石油地质储量的原理相同,方法相似。容积法计算气田天然气储量的公式为:

公式中,天然气体积系数是一个与天然气组成成分、地下及地面的温度和压力有关的系数。

储量计算完以后,还要对探明储量进行综合评价。评价的目的是检查储量计算的可靠性。如果把储量计算比喻为一份考卷,那么对储量的综合评价就相当于答卷者在交卷之前的自我检查,仔细查看卷面上有无错、漏、公式使用不当、计算失误等等。经检查后,如证明使用的参数齐全、准确、计算无误,所定储量的级别和勘探阶段及研究程度相符,就可以上交了。