天然气动态储量计算方法是什么类型呢为什么呢_天然气动力
1.济阳坳陷天然气区带资源评价技术与应用
2.根据SPE(PRMS)分类体系,应用油气田地质模型计算资源储量
3.什么是可采储量及剩余可采储量?
4.石油天然气关键参数研究与获取
5.天然气储量够用多少年?
6.石油技术可采储量的计算
Specifications for coalbedmethane resources/reserves
中华人民共和国地质矿产行业标准
DZ/T 0216—2002
国土资源部2002-12-17发布;2003-03-01实施。
1 范围
本标准规定了我国煤层气资源/储量分类分级标准及定义、储量计算方法、储量评价标准和储量报告的编写要求。
本标准适用于地面钻井开发时的煤层气资源/储量计算,适用于煤层气的资源勘查、储量计算、开发设计及报告编写;可以作为煤层气矿业权转让、证券交易以及其他公益性和商业性矿业活动中储量评估的依据。
2 规范性引用文件
下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。
GB 212—91 煤的工业分析方法
GBn/T 270—88 天然气储量规范
GB/T 13610—92 气体组分分析方法
储发[1986]147号 煤炭资源地质勘探规范
MT/T 77—94 煤层气测定方法(解吸法)
3 总则
3.1 煤层气田(藏)储层具有不均质性,其含气性和产能等也是有差别的,宜实行滚动勘探开发,应进行动态储量评估,从发现直到废弃的各个勘探开发阶段,其经营者应根据地质、工程资料的变化以及技术和经济或相关政策条件的变化,分阶段进行储量计算、复算、核算和结算。
3.2 煤层是赋存煤层气的储层,煤田勘查程度和认识程度既是煤层气勘查部署的重要基础,也是煤层气资源/储量评估的重要依据。
4 定义
4.1 煤层气
是赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解于煤层水中的烃类气体。
4.2 煤层气资源
4.2.1 定义
是指以地下煤层为储集层且具有经济意义的煤层气富集体。其数量表述分为资源量和储量。
4.2.2 煤层气资源量
是指根据一定的地质和工程依据估算的赋存于煤层中,当前可开采或未来可能开采的,具有现实经济意义和潜在经济意义的煤层气数量。
4.2.3 煤层气地质储量
4.2.3.1 定义
是指在原始状态下,赋存于已发现的具有明确计算边界的煤层气藏中的煤层气总量。
4.2.3.2 原始可采储量(简称可采储量)
是地质储量的可采部分。是指在现行的经济条件和政府法规允许的条件下,采用现有的技术,预期从某一具有明确计算边界的已知煤层气藏中可最终采出的煤层气数量。
4.2.3.3 经济可采储量
原始可采储量中经济的部分。是指在现行的经济条件和政府法规允许的条件下,采用现有的技术,预期从某一具有明确计算边界的已知煤层气藏中可以采出,并经过经济评价认为开采和销售活动具有经济效益的那部分煤层气储量。经济可采储量是累计产量和剩余经济可采储量之和。
4.2.3.4 剩余经济可采储量
是指在现行的经济条件和政府法规允许的条件下,采用现有的技术,从指定的时间算起,预期从某一具有明确计算边界的已知煤层气藏中可以采出,并经过经济评价认为开采和销售活动具有经济效益的那部分煤层气数量。
4.3 煤层气勘查
4.3.1 定义
是指在充分分析地质资料的基础上,利用钻井、地震、遥感以及生产试验等手段,调查地下煤层气资源赋存条件和赋存数量的评价研究和工程实施过程。可分为两个阶段,包括选区、勘探。
4.3.2 选区
主要根据煤田(或其他矿产资源)勘查(或预测)和类比、野外地质调查、小煤矿揭露以及煤矿生产所获得的煤资源和气资源资料进行综合研究,以确定煤层气勘查目标为目的的资源评价阶段。根据选区评价的结果可以估算煤层气推测资源量。
4.3.3 勘探
在评价选区范围内实施了煤层气勘查工程,通过参数井或物探工程获得了区内关于含煤性和含气性的认识,通过单井和/或小型井网开发试验获得了开发技术条件下的煤层气井产能情况和井网优化参数的煤层气勘查实际实施阶段。根据勘探结果可以计算煤层气储量。
4.4 煤层气开发
指在勘探区按照一定的开发方案部署了一定井距的开发井网后进行的煤层气资源的正式开采活动。煤层气通常适合进行滚动勘探开发。
5 煤层气资源/储量的分类与分级
5.1 分类分级原则
煤层气储量的分类以在特定的政策、法律、时间以及环境条件下生产和销售能否获得经济效益为原则,在不同的勘查阶段通过技术经济评价,根据经济可行性将其分为经济的、次经济的和内蕴经济的3大类。分级以煤层气资源的地质认识程度的高低作为基本原则,根据勘查开发工程和地质认识程度的不同,将煤层气资源量分为待发现的和已发现的两级。已发现的煤层气资源量,又称煤层气地质储量,根据地质可靠程度分为预测的、控制的和探明的3级。可采储量可根据所在的地质储量确定相应的级别。
5.2 分类
5.2.1 经济的
在当时的市场经济条件下,生产和销售煤层气在技术上可行、经济上合理、地质上可靠并且整个经营活动能够满足投资回报的要求。
5.2.2 次经济的
在当时的市场经济条件下,生产和销售煤层气活动暂时没有经济效益,是不经济的,但在经济环境改变或政府给予扶持政策的条件下,可以转变为经济的。
5.2.3 内蕴经济的
在当时的市场经济条件下,由于不确定因素多,尚无法判断生产和销售煤层气是经济的还是不经济的,也包括当前尚无法判定经济属性的部分。
5.3 分级
5.3.1 预测的
初步认识了煤层气资源的分布规律,获得了煤层气藏中典型构造环境下的储层参数。因没有进行排采试验,仅有一些含煤性、含气性参数井工程,大部分储层参数条件是推测得到的,煤层气资源的可靠程度很低,储量的可信系数为0.1~0.2。
5.3.2 控制的
基本查明了煤层气藏的地质特征和储层及其含气性的展布规律,开采技术条件基本得到了控制,并通过单井试验和储层数值模拟了解了典型地质背景下煤层气地面钻井的单井产能情况。但由于参数井和生产试验井数量有限,不足以完全了解整个气藏计算范围内的气体赋存条件和产气潜能,因此煤层气资源可靠程度不高,储量的可信系数为0.5左右。
5.3.3 探明的
查明了煤层气藏的地质特征、储层及其含气性的展布规律和开采技术条件(包括储层物性、压力系统和气体流动能力等);通过实施小井网和/或单井煤层气试验或开发井网证实了勘探范围内的煤层气资源及可采性。煤层气资源的可靠程度很高,储量的可信系数为0.7~0.9。
关于剩余的探明经济可采储量的分类、分级参照天然气储量规范,本规范暂不对其进行命名。剩余的探明经济可采储量可以根据开发状态分为已开发的和待开发的两类:
a)已开发的,是指从探明面积内的现有井中预期采出的煤层气数量;
b)待开发的,是指从探明面积内的未钻井区或现有井加深到另一储层中预期可以采出的煤层气数量。
5.4 煤层气资源/储量分类、分级体系
根据煤层气资源/储量分类、分级标准及其与勘探控制工程的对应关系,建立煤层气资源/储量分类和分级体系(表1)。
6 煤层气资源/储量计算
6.1 储量起算条件和计算单元
6.1.1 储量起算条件
煤层气储量计算以单井产量下限为起算标准,即只有在煤层气井产气量达到产量下限的地区才可以计算探明储量。根据国内平均条件,所确定的单井平均产量下限值见表2。表3中所给出的各级储量勘查程度和认识程度是储量计算应达到的基本要求。
表1 煤层气资源/储量分类与分级体系
表2 储量起算单井产量下限标准
6.1.2 储量计算单元
储量计算单元一般是煤层气藏,即是各种地质因素控制的含气的煤储集体,当没有明确的煤层气藏地质边界时按煤层气藏计算边界计算。计算单元在平面上一般称区块,面积很大的区块可细分井块(或井区),同一区块应基本具有相同或相似的构造条件、储气条件等;纵向上一般以单一煤层为计算单元,煤层相对集中的煤层组可合并计算单元,煤层风化带以浅的煤储层中不计算储量,关于风化带的各项指标参照《煤炭资源地质勘探规范》。
表3 各级煤层气储量勘查程度和认识程度要求
6.1.3 储量计算边界
储量计算单元的边界,最好由查明的煤层气藏的各类地质边界,如断层、地层变化(变薄、尖灭、剥蚀、变质等)、含气量下限、煤层净厚下限(0.5~0.8m)等边界确定(对煤层组的情况可根据实际条件做适当调整);若未查明地质边界,主要由达到产量下限值的煤层气井圈定,由于各种原因也可由矿权区边界、自然地理边界或人为储量计算线等圈定。煤层含气量下限值如表4,表4也可根据具体条件进行调整,如煤层厚度不同时应适当调整。
表4 煤层含气量下限标准
6.2 储量计算方法
6.2.1 地质储量计算
6.2.1.1类比法
类比法主要利用与已开发煤层气田(或相似储层)的相关关系计算储量。计算时要绘制出已开发区关于生产特性和储量相关关系的典型曲线,求得计算区可类比的储量参数再配合其他方法进行储量计算。类比法可用于预测地质储量的计算。
6.2.1.2 体积法
体积法是煤层气地质储量计算的基本方法,适用于各个级别煤层气地质储量的计算,其精度取决于对气藏地质条件和储层条件的认识,也取决于有关参数的精度和数量。
体积法的计算公式:
Gi=0.01 AhDCad
或
Gi=0.01 AhDdafCdaf
式中:Cad=100Cdaf(100-Mad-Ad);
Gi——煤层气地质储量,单位为亿立方米(108m3);
A——煤层含气面积,单位为平方千米(km2);
h——煤层净厚度,单位为米(m);
D——煤的空气干燥基质量密度(煤的容重),单位为吨每立方米(t/m3);
Cad——煤的空气干燥基含气量,单位为立方米每吨(m3/t);
Ddaf——煤的干燥无灰基质量密度,单位为吨每立方米(t/m3);
Cdaf——煤的干燥无灰基含气量,单位为立方米每吨(m3/t);
Mad——煤中原煤基水分(wB),单位为百分数(%);
Ad——煤中灰分(wB),单位为百分数(%)。
6.2.2 可采储量计算
6.2.2.1 数值模拟法
数值模拟法是煤层气可采储量计算的一个重要方法,这种方法是在计算机中利用专用软件(称为数值模拟器)对已获得的储层参数和早期的生产数据(或试采数据)进行拟合匹配,最后获取气井的预计生产曲线和可采储量。
a)数据模拟器选择:选用的数值模拟器必须能够模拟煤储层的独特双孔隙特征和气、水两相流体的3种流动方式(解吸、扩散和渗流)及其相互作用过程,以及煤体岩石力学性质和力学表现等。
b)储层描述:是对储层参数的空间分布和平面展布特征的研究,是对煤层气藏进行定量评价的基础,描述应该包括基础地质、储层物性、储层流体及生产动态等4个方面的参数,通过这些参数的描述建立储层地质模型用于产能预测。
c)历史拟合与产能预测:利用储层模拟工具对所获得的储层地质和工程参数进行计算,将计算所得气、水产量及压力值与气井实际产量值和实测压力值进行历史拟合。当模拟的气、水产量动态与气井实际生产动态相匹配时,即可建立气藏模型获得产气量曲线,预测未来的气体产量并获得最终的煤层气累计总产量,即煤层气可采储量。
根据资料的掌握程度和计算精度,储层模拟法的计算结果可作为控制可采储量和探明可采储量。
6.2.2.2 产量递减法
产量递减法是通过研究煤层气井的产气规律、分析气井的生产特性和历史资料来预测储量,一般是在煤层气井经历了产气高峰并开始稳产或出现递减后,利用产量递减曲线的斜率对未来产量进行计算。产量递减法实际上是煤层气井生产特性外推法,运用产量递减法必须满足以下几个条件:
a)有理由相信所选用的生产曲线具有气藏产气潜能的典型代表意义;
b)可以明确界定气井的产气面积;
c)产量-时间曲线上在产气高峰后至少有半年以上稳定的气产量递减曲线斜率值;
d)必须有效排除由于市场减缩、修井或地表水处理等非地质原因造成的产量变化对递减曲线斜率值判定的影响。
产量递减法可以用于探明可采储量的计算,特别是在气井投入生产开发阶段,产量递减法可以配合体积法和储层模拟法一起提高储量计算精度。
6.2.2.3 采收率计算法
可采储量也可以通过计算气藏采收率来计算,计算公式:
Gr=GiRf
式中:Gr——煤层气可采储量,单位为亿立方米(108m3);
Gi——煤层气地质储量,单位为亿立方米(108m3);
Rf——采收率,单位为百分数(%)。
煤层气采收率(Rf)可以通过以下几种方法计算:
a)类比法:根据与已开发气田或邻近气田的地质参数和工程参数进行类比得出,只能用于预测可采储量计算。
b)储层模拟法:在储层模拟产能曲线上直接计算,可用于控制可采储量和探明可采储量的计算。
Rf=GPL/Giw
式中:GPL——气井累计气体产量,单位为亿立方米(108m3);
Giw——井控范围内的地质储量,单位为亿立方米(108m3)。
c)等温吸附曲线法:在等温吸附曲线上通过废弃压力计算,只能用于预测可采储量的计算,也可以作为控制可采储量计算的参考。
Rf=(Cgi-Cga)/Cgi
式中:Cgi——原始储层条件下的煤层气含量,单位为立方米每吨(m3/t);
Cga——废弃压力条件下的煤层气含量,单位为立方米每吨(m3/t)。
d)产量递减法:在已获得稳定递减斜率的产量递减曲线上直接计算,可用于探明可采储量的计算。
Rf=GPL/Giw
式中:GPL——气井累计气体产量,单位为亿立方米(108m3);
Giw——井控范围内的地质储量,单位为亿立方米(108m3)。
7 煤层气资源/储量计算参数的选用和取值
7.1 体积法参数确定
7.1.1 煤层含气面积(简称含气面积)
含气面积是指单井煤层气产量达到产量下限值的煤层分布面积。应充分利用地质、钻井、测井、地震和煤样测试等资料综合分析煤层分布的地质规律和几何形态,在钻井控制和地震解释综合编制的煤层顶、底板构造图上圈定,储层的井(孔)控程度应达到附录B和表3所规定的井距要求。含气面积边界圈定原则如下:
a)钻井和地震综合确定的煤层气藏边界,即断层、尖灭、剥蚀等地质边界;达不到产量下限的煤层净厚度下限边界;含气量下限边界和瓦斯风化带边界。
b)煤层气藏边界未查明或煤层气井离边界太远时,主要以煤层气井外推圈定。探明面积边界外推距离不大于附录B规定井距的0.5~1.0倍,可分以下几种情况(假定附录B规定距离为1个井距):
1)仅有1口井达到产气下限值时,以此井为中心外推1/2井距;
2)在有多口相邻井达到产气下限值时,若其中有两口相邻井井间距离超过3个井距,可分别以这两口井为中心外推1/2井距;
3)在有多口相邻井达到产气下限值时,若其中有两口相邻井井间距离超过两个井距,但小于3个井距时,井间所有面积都计为探明面积,同时可以这两口井为中心外推1个井距作为探明面积边界;
4)在有多口相邻井达到产气下限值,且井间距离都不超过两个井距时,探明面积边界可以边缘井为中心外推1个井距。
c)由于各种原因也可由矿权区边界、自然地理边界或人为储量计算线等圈定。作为探明面积边界距离煤层气井不大于附录B规定井距的0.5~1.0倍。
7.1.2 煤层有效(净)厚度(简称有效厚度或净厚度)
煤层有效厚度是指扣除夹矸层的煤层厚度,又称为净厚度。探明有效厚度应按如下原则确定:
a)应是经过煤层气井试采证实已达到储量起算标准,未进行试采的煤层应与邻井达到起算标准的煤层是连续和相似的;
b)井(孔)控程度应达到附录B井距要求,一般采用面积权衡法取值;
c)有效厚度应主要根据钻井取心或测井划定,井斜过大时应进行井位和厚度校正;
d)单井有效厚度下限值为0.5~0.8m(视含气量大小可作调整),夹矸层起扣厚度为0.05~0.10m。
7.1.3 煤质量密度
煤质量密度分为纯煤质量密度和视煤质量密度,在储量计算中分别对应不同的含气量基准。测定方法见GB 212—91煤的工业分析方法。
7.1.4 煤含气量
可采用干燥无灰基(dry,ash-free basis)或空气干燥基(air-dry basis)两种基准含气量近似计算煤层气储量,其换算关系可根据下式计算:
Cad=100Cdaf(100-Mad-Ad)
式中:Cad——煤的空气干燥基含气量,单位为立方米每吨(m3/t);
Cdaf——煤的干燥无灰基含气量,单位为立方米每吨(m3/t);
Mad——煤中原煤基水分(wB),单位为百分数(%);
Ad——煤中灰分(wB),单位为百分数(%)。
但是,为了保证计算结果的准确性,最好采用原煤基(in-situ basis)含气量计算煤层气储量。原煤基含气量需要在空气干燥基含气量的基础上进行平衡水分和平均灰分校正,校正公式:
Cc=Cad-β[(Ad-Aav)+(Mad-Meq)]
式中:Cc——煤的原煤基含气量,单位为立方米每吨(m3/t);
Cad——煤的空气干燥基含气量,单位为立方米每吨(m3/t);
Aav——煤的平均灰分(wB),单位为百分数(%);
Meq——煤的平衡水分(wB),单位为百分数(%);
β——空气干燥基含气量与(灰分+水分)相关关系曲线斜率。
各种基准煤层气含量及平衡水分测定参照美国矿务局USBM煤层气含量测定和ASTM平衡水分测定方法。
煤层气含量确定原则如下:
a)计算探明地质储量时,应采用现场煤心直接解吸法(美国矿业局USBM法)的实测含气量,煤田勘查煤心分析法(煤炭行业标准MT/T 77—94)测定的含气量也可参考应用,但宜进行必要的校正。采样间隔:煤层厚度10m以内,每0.5~1.0m 1个样;煤层厚度10m以上,均匀分布10个样以上(可每2m或更大间隔1个样)。井(孔)控程度达到附录B规定井距的1.5~2.0倍,一般采用面积权衡法取值,用校正井圈出的大于邻近煤层气井的等值线,所高于的含气量值不参与权衡。
b)计算未探明地质储量时,可采用现场煤心直接解吸法和煤田勘查煤心分析法(MT/T 77—94煤层气测定方法)测定的含气量。与邻近的、地质条件和煤层煤质相似的地区类比求得的含气量,可用于预测地质储量计算。必要时也可根据煤质和埋深估算含气量,估算的含气量可用于预测地质储量的计算。
c)矿井相对瓦斯涌出量在综合分析煤层、顶底板和邻近层以及采空区的有关地质环境和构造条件后可作为计算推测资源量时含气量的参考值。用于瓦斯突出防治的等温吸附曲线虽然也能提供煤层气容量值,但在参考引用时必须进行水分和温度等方面的校正,校正后可用于推测资源量计算。
d)煤层气成分测定参见 GB/T 13610—92气体组分分析方法。煤层气储量应根据气体成分的不同分类计算。一般情况下,参与储量计算的煤层气含量测定值中应剔除浓度超过10%的非烃气体成分。
7.2 数值模拟法和产量递减法参数的确定
数值模拟法和产量递减法参数,如气水性质、煤质与组分、储层物性、等温吸附特征、温度、压力和气水产量等,参照GB 212—91、GB/T 13610—92及有关标准执行,或另行制定细则。
7.3 储量计算参数取值
a)储量计算中的参数可由多种资料和多种方法获得,在选用时应详细比较它们的精度和代表性进行综合选值,并在储量报告中论述确定参数的依据;
b)计算地质单元的参数平均值时,煤层厚度原则上应根据实际构造发育规律,采用等值线面积平衡法或井点控制面积权衡法,但在煤田勘查的详查区和精查区可直接采用算术平均法计算,其他参数一般应采用煤层气参数试验井井点控制面积权衡法计算;
c)各项参数名称、符号、单位及有效位数见附录B的规定,计算中一律采用四舍五入进位法;
d)煤层气储量应以标准状态(温度20℃,压力0.101MPa)下的干燥体积单位表示。
8 煤层气储量评价
8.1 地质综合评价
8.1.1 储量规模
按储量规模大小,将煤层气田的地质储量分为4类,如表5。
表5 储量规模分类表
8.1.2 储量丰度
按煤层气田的储量丰度大小,将煤层气田的地质储量丰度分为4类,如表6。
表6 储量丰度分类表
8.1.3 产能
按气井的稳定日产量,将气藏的产能分为4类,如表7。
表7 煤层气井产能分类表
8.1.4 埋深
按埋藏深度,将气藏分为3类,如表8。
表8 煤层气藏埋深分类表
8.2 经济评价
a)采用净现值分析法对煤层气勘查开发各阶段所提交的各级储量在未来开发时的费用和效益进行预测,分析论证其财务可行性和经济合理性优选勘探开发项目,以获得最佳的经济效益和社会效益;
b)储量经济评价应贯穿于煤层气勘探开发的全过程,对各级储量均应进行相应的经济评价;
c)所有申报的探明储量必须进行经济评价;
d)经济评价中关于投资、成本和费用的估算应依据煤层气田的实际情况,充分考虑同类已开发或邻近煤层气田当年的统计资料;
e)对新气田煤层气井产能的预测,必须有开发部门编制的开发概念设计作为依据,平均单井稳定日产量可依据储层数值模拟做专门的论证。
8.3 储量报告
煤层气田或区块申报储量时应编写正式报告。储量报告的编写要求参照附录C。
附录A
(规范性附录)
煤层气储量计算参数名称、符号、单位及取值有效位数的规定
表A.1 煤层气储量计算参数名称、符号、单位及取值有效位数的规定
附录B
(规范性附录)
煤层气探明地质储量计算关于储层的基本井(孔)控要求
表B.1 煤层气探明地质储量计算关于储层的基本井(孔)控要求
附录C
(资料性附录)
煤层气探明储量报告的编写要求
C.1 报告正文
C.1.1 前言
煤层气田名称、地理位置、登记区块名称和许可证号码、已有含气面积和储量、本次申报含气面积和储量申报单位等。
C.1.2 概况
勘查开发简史、煤田勘查背景,煤炭生产概况,煤层气勘查所实施的工作量、勘查单位、资料截止日期和取得资料情况等。
C.1.3 地质条件
区域构造位置、构造特征、地层及煤层发育特征、水文地质特征、煤层气勘查工程的地质代表性、储层特征、含气性及其分布特征等。
C.1.4 排采试验与产能分析
单井排采或小井网开发试验的时间、生产工艺,单井和井网产能及开发生产动态特征等。
C.1.5 储量计算
储量计算方式与方法选择、储量级别和类别的确定、参数确定、计算结果、可采储量计算和采收率确定方法与依据,以及储量复算或核算前后储量参数变化的原因和依据。
C.1.6 储量评价
规模评价、地质综合评价、经济评价、可行性评价等。
C.1.7 存在问题与建议
C.2 报告附图表
a)附图:气田位置及登记区块位置图、含气面积图、煤层底板等高线图,煤层厚度等值线图、煤层含气量等值线图、主要气井气水产量曲线图、确定储量参数依据等的有关图件。
b)附表:气田地质基础数据表、排采成果表、储层模拟成果表、储量参数原始数据表、主要气井或分单元储量参数和储量计算表、开发数据表、经济评价表。
C.3 报告附件
附件可包括:地质研究报告、煤储层描述研究报告、储量参数研究报告、关键井单井评价报告、试验生产报告等。
附加说明
煤层气是重要的洁净新能源,制定一个适合我国国情并与国际(油气)准则相衔接的煤层气储量计算、评价和管理规范,可以促进煤层气资源的合理利用。由于目前没有通用的储量分类标准和计算方法,为规范我国煤层气资源/储量分类和计算,并促进国际交流,根据GBn/T 270—88《天然气储量规范》、GB/T 17766—1999《固体矿产资源/储量分类》,并参考了美国石油工程师学会(SPE)和世界石油大会(WPC)、联合国经济和社会委员会以及美国证券交易管理委员会(SEC)等颁布的有关储量分类标准,制定本标准。
本标准自实施之日起,凡报批的煤层气储量报告,均应符合本标准和规定。
本标准和附录A、附录B是规范性附录。
本标准的附录C是资料性附录。
本标准由中华人民共和国国土资源部提出。
本标准由全国地质矿产标准化技术委员会归口。
本标准起草单位:中联煤层气有限责任公司。
本标准主要起草人:杨陆武、冯三利、胡爱梅、李明宅。
本标准由中华人民共和国国土资源部负责解释。
济阳坳陷天然气区带资源评价技术与应用
油气地质储量通常用容积法计算。所谓容积法,就是将含油(或含气)面积乘以油层的平均有效厚度,再乘以储油层岩石的平均有效孔隙度,就得到储存油或气的孔隙体积。但整个孔隙空间并非为油气所独占,还必须将水占据的孔隙体积剔除,这就得再乘上含油饱和度(或减去含水饱和度的参数),这样,油(或气)真正占据的孔隙体积则被求出。我们计算油气量是要知道在地面条件下(标准压力、标准温度条件)的量,不是只了解油气在油气藏压力、温度条件下的体积,所以,还必须乘上油气的密度并除以油或气的体积系数,这样,才可以实实在在提交出地面条件下油气的地质储量。根据容积法的原理,当有了精细的地质模型以后,计算机就会很快将储量计算出来。
油气地质储量的计算公式如下:
(1)石油地质储量的计算(按地面条件下重量计算)。
公制单位计算公式:
式中,N为石油地质储量,万吨;A为含油面积,平方千米;h为平均有效厚度,米;Φ为平均有效孔隙度,小数;SWi为油层原始平均含水饱和度,小数;ρo为地面脱气原油密度,吨/立方米;Boi为原始原油平均体积系数,立方米/立方米。
地层原油中的原始溶解气地质储量计算公式如下:
式中,GS为溶解气的地质储量,亿立方米;Rsi为原始溶解气油比,立方米/吨。
(2)天然气地质储量的计算(按地面条件下容积计算)。
公制单位计算公式:
式中,G为天然气地质储量,亿立方米;A为含气面积,平方千米;h为平均有效厚度,米;Φ为平均有效孔隙度,小数;Swi为平均气层原始含水饱和度,小数;T为气层绝对温度,开尔文;TSC为地面标准绝对温度,开尔文;PSC为地面标准压力,兆帕;Pi为气田的原始地层压力,兆帕;Zi为原始气体偏差系数,无因次量。
根据SPE(PRMS)分类体系,应用油气田地质模型计算资源储量
姜慧超 穆星 车燕
摘要 根据济阳坳陷中、浅层天然气成藏规律和成藏特点,首次应用油-气-水三相盆地模拟、古热史恢复和油溶释放气成藏定量分析等技术,采用多种计算方法,确定了济阳坳陷各区带天然气资源量,初步建立了一套适用于陆相富油盆地天然气资源评价的技术方法,对油溶释放气成藏规律的探讨和天然气生、排、运、聚、散动态地质过程的解析,为油田天然气的勘探和部署提供了依据。
关键词 济阳坳陷 天然气 运移聚集 盆地模拟 资源评价
一、引言
济阳坳陷是典型的富油盆地,干酪根以I型为主,埋藏浅,热演化程度低,主要以生油为主。截至1999年底,胜利油区累计探明天然气储量1850×108m3,其中气层气储量341.43×108m3,溶解气储量1508.61×108m3,溶解气占天然气总量的80%以上,天然气的生成、运移和成藏均受到油溶解作用的影响。
针对济阳坳陷中、浅层天然气以溶解气为主的特点,对天然气资源评价提出如下技术要求:为较好解决天然气的初始运移相态问题,在生气与排气方面研究,需用油-气-水三相的盆地模拟软件;济阳坳陷天然气的一个重要来源是油溶释放气,需要形成一套天然气的溶解与脱气作用的定量评价技术;天然气的溶解与脱气受到液态烃运移过程的控制,需要包括油气运移与聚集的全过程盆地模拟软件的支持。
本次天然气的资源评价工作引进并开发完善了IES油-气-水三相盆地模拟软件,计算的气层气地质储量达1042×108m3,比第二轮资源评价增加一倍多。
二、古热史恢复
1.原理
古热流值是盆地模拟的重要参数,其值的大小,不仅决定盆地的热史演化,而且控制其生烃过程。由于第二轮资源评价的古热流值是采用类比法确定的,影响了模拟的精度和可信度。针对此问题,开展了济阳坳陷古热流的恢复,首次定量地模拟出济阳坳陷古热流演化曲线。
目前,国内外广泛采用的热史恢复技术可归纳为三大类,即地球热力学法(正演技术)、古温标法(反演技术)和综合法(热史模拟技术)。综合法主要是将正演技术与反演技术相结合(即将地史恢复和热史恢复相结合),通过建立数学模型,利用已知的地层信息和古温标资料作为约束条件,对盆地的热演化史进行模拟。本次研究采用综合法,原理简述如下。
第一,根据傅里叶定律,由今地温梯度求某结点的今热流和地幔热流;
第二,求给定某点的古地幔热流、生热量和总热流;
第三,计算古地温;
第四,由Easy-Ro法计算古地温标 Ro;
第五,计算Ro与实测Ro的符合性检验,修改岩石圈初始拉张时的厚度,直至误差满足要求。
图1 济坳陷古热流和构造沉降演化曲线图
上述热史恢复方法可以将岩石圈尺度与盆地尺度、正演技术与反演技术有机地结合,并由参量β及古地温标(Ro)数据反演区域热流变化及其对盆地内各点的作用效果。
2.热史恢复结果及对油气生成的控制作用
由模拟出的中生代以来的大地热流演化曲线可以看出,从白垩纪早期至古新世开始时,热流达到最大值,为83.6mW/m2,相当于现今活动裂谷的热流值;从热演化的角度分析,该区大陆裂谷活动于始新世开始。始新世至现今,大地热流的总体趋势变低,中间有两次回升,较大的一次距今35Ma,另一次距今约5Ma。第三纪以来,热流演化曲线的整体形态是“马鞍型”(图1)。受热流演化和埋藏史的双重控制,下第三系烃源岩经历了持续的受热过程,现今仍处于“生油窗口”范围内。
三、油-气-水三相盆地模拟
1.天然气的生成
Ⅰ型干酪根的油气生成过程模拟结果表明,埋深大于3900~4000m(Ro≥1.0%)时开始进入游离气生气区,随气体生成量增大,逐渐高于液态烃溶解天然气的能力,气体主要以游离相态排出;埋深小于3900~4000m时,以生油和伴生的溶解气为主,天然气以溶解相态排出为主;Ⅰ型干酪根在4050~4150m进入油裂解气生气区,此时,部分液态石油
裂解成气。
在相同的热史、地史条件下,Ⅱ型干酪根在3100m左右进入游离气大量生气区,较Ⅰ型干酪根的生气区埋深浅。这也是济阳坳陷某些贫油洼陷天然气相对富集的原因。
2.天然气的运移、聚集与扩散
通过对各沉积时期天然气的流体势分布和运移方向的模拟,认为天然气的二次运移主要发生在东营组沉积末期,较油滞后,其运移方向主要受气体势分布的控制,断裂带是其最重要的运移疏导层。通过含油气饱和度分布的模拟,确定了天然气的有利聚集部位一般较油藏埋藏浅,天然气在明化镇组和第四系沉积时期成藏,模拟结果与目前气藏的实际分布情况较为吻合,为确定勘探方向提供了重要依据。
从图2可以看出,馆陶组沉积时期是其主要的烃类散失期,这是因为东营运动造成东营组与馆陶组之间存在不整合面以及馆陶组缺乏区域性良好盖层。馆陶组沉积以前,由于未进入大量生气阶段,以散失油和伴生气为主;馆陶组沉积时期,以散失油、伴生气和游离气为主;明化镇组沉积时期,以散失游离气为主。
图2 济阳坳陷部分洼陷散失烃量模拟结果示意图
四、油溶释放气成藏的定量分析
1.油溶释放气是天然气的主要来源
从中浅层气藏与稠油油藏的分布关系可以看出,液态烃从深部向中浅层运移过程中,随温度和压力的降低,液态烃组分发生分离,重质组分形成稠油油藏,轻质组分多在其上方形成中浅层气藏。如孤岛、孤东、埕东、义东、陈家庄等绝大多数气藏均具有与稠油油藏相伴生的特点,各项地球化学分析资料也已证明浅层气与稠油是同源的。
Ⅰ型干酪根的生烃模拟结果表明:生气区以上以生油和伴生的溶解气为主,天然气以溶解相态排出为主。由于济阳坳陷烃源岩的干酪根类型以工型为主,且埋深浅(最大埋深小于4400m,一般小于4000m),热演化程度低(Ro≤1.0),因此,溶解相态是济阳坳陷天然气的主要赋存相态。
从气-源岩对比结果也发现两者具有较好的亲缘关系,伴生气δ13C1的平均值为-41.80,与气藏气的平均值-42.14十分接近,证明了浅层天然气可能来自于液态烃运移过程中产生的油溶释放气。
从天然气组分含量分析结果来看,济阳坳陷天然气的甲烷含量一般大于95%,部分气田甲烷含量达到了99.0%以上,属于“干气”的范畴,但在“生油窗内”不应生成大量“干气”。这是因为不同的天然气组分在油中的溶解度是不同的。依据相似相溶原理,天然气相对分子质量越大的重烃组分在油中的溶解度越高,如在30℃、10MPa条件下,乙烷的溶解度是甲烷的4倍,丙烷的溶解度是甲烷的20倍,且压力越高倍数越大。溶解度的差异说明甲烷较其他组分更容易从油中释放或脱气,导致天然气中甲烷含量较高。地下原油在开采到地表后,释放出的轻烃组分总是以甲烷高纯度为特征,而其他组分在油中多未达到饱和。
2.油及地下水溶解天然气模型
(1)油溶解气释放模型
天然气在液态石油中的溶解度主要受控于温度、压力和原油密度,溶解度与饱和压力呈正相关关系而与原油密度呈负相关关系,当地层压力接近饱和压力时,天然气就会从油中释放出来,产生脱气作用。
(2)地层水溶解天然气模型
天然气在地层水中的溶解度主要受控于温度、压力和水的矿化度,影响最大的因素为压力。天然气在水中的溶解度随压力增高而增大,随温度的增加而降低,温度为70~100℃时溶解度达到最小值。水的矿化度对溶解度的影响也较大,并随矿化度的增大而减小。
3.油溶释放气起始脱气点的计算
溶解于油中的天然气在随游离烃向上运移过程中,由于温度、压力及原油性质的变化,气体从油中游离析出发生脱气作用,形成中浅层的次生气藏。为了确定起始脱气深度,研制了油溶释放气起始脱气点的计算程序。通过建立的油溶气模型可以看出,当地层压力等于饱和压力时,天然气在油中的溶解度可看做该温度压力条件下的最大溶解气量,可作出单位(吨)油的最大溶解气量与地层压力和原油密度关系图,并标定油气运移的轨道。通过对油气藏物性数据的分析发现,对于一个含油气盆地而言,在同一层位内,伴随流体由深到浅、由洼陷中心向边缘运移,具有地层压力逐渐降低,原油密度逐渐增高的趋势。如果把洼陷内部埋藏深、封闭条件好的岩性油气藏的气油比(一般相当于洼陷的最大油气比)近似作为洼陷的原始气油比,选取与原始气油比相等的最大溶解气量等值线与油气运移轨迹的交点,所对应的地层压力可看做现今埋深条件下油溶气起始脱气压力,对应的深度等值可看做起始脱气深度。
通过计算,济阳坳陷各主要洼陷平均起始脱气点为1900m,1750~2000m为进入起始脱气深度。
4.天然气的脱气模式与赋存状态分析
根据起始脱气深度的计算,建立了济阳坳陷主要洼陷的油溶气脱气模式。如牛庄洼陷脱气模式,随液态烃自洼陷中心向边部的运移,自洼陷中心至南斜坡地层压力逐渐降低,原油密度逐渐增大,实际气油比呈逐渐下降的趋势,在1750m左右进入起始脱气点,液态烃开始脱气,目前已探明的天然气均在起始脱气点之上,为1750~1200m,虽进入起始脱气点,但脱气作用不完全,主要以气顶气和夹层气藏为主;深度小于1200m,脱气作用较完全,以纯气层气藏为主。脱气作用形成的中浅层次生气藏,受液态烃运移最终指向的控制,分布在断裂带和凸起上;深度为3900~1750m时,天然气在油中处于欠饱和状态,以溶解气的赋存形式为主;深度大于3900m,烃源岩才开始进入生成大量游离气阶段,可形成深层原生气藏,但该类气藏目前还未经钻探证实。
通过对济阳坳陷其他洼陷的油溶气释放规律的对比分析发现,它们与牛庄洼陷具有基本相同的特征,油溶释放气的起始脱气点深度为1750~2000m,对油溶释放气形成的中浅层气藏的勘探深度应集中在埋深小于2000m的区域。
需要说明的是,起始脱气点的计算和脱气模式反映的是现今埋深条件下的状态,即现今形成的天然气才具有的脱气和成藏规律,由于济阳坳陷天然气成藏期晚,主要在距今5Ma之后开始生成和运移成藏,而且成藏作用还在进行,因此可用现今时刻的起始脱气点的计算和脱气模式近似反映天然气的赋存状态。对于成藏较早的地区不能简单套用,计算起始脱气点需要考虑主要成藏期后再沉积的厚度。
5.天然气“饱和程度”的计算与有利含气区带的预测
为了进一步探讨油溶气释放规律,提出了“饱和程度”的概念和计算方法,该方法根据试油成果获取单井在地表状态下的日产油量、日产气量和日产水量以及温度、压力和流体性质数据,恢复地下状态天然气在油水中的饱和状态。
通过“饱和程度”的分析,认为浅层气的富集主要受液态烃运移最终指向的控制,在凸起、隆起带和洼陷四周的斜坡带上以次生的气层气和部分气顶气形式存在;中层气的富集受断裂带控制,在洼陷和凸起断裂带以气顶气和夹层气等形式存在;深层气主要富集在洼陷中心或邻近洼陷中心的高部位,可能多以原生的游离相态聚集的气层气形式存在。
五、区带资源量计算方法
1.二、三维盆地模拟相结合的方法
表1 济阳坳陷区带天然气资源量计算表
根据各凹陷三维盆地模拟结果,计算气层气供气量,再乘上聚集系数得出气层气资源量;根据IES模拟结果,可知单条测线在不同区带的天然气聚集量,再进行面积加权和地质分析,综合确定各含气区带的聚集量百分比,即可计算出各区带的气层气资源量。
2.地质综合评价法
(1)划分天然气排聚单元
排聚单元是以聚集区为核心的天然气排运聚散系统,依据IES模拟的流体运移方向和古气势场分布,将济阳坳陷划分为14个排气单元。
(2)计算各排聚单元供气量
在排聚单元划分的基础上进行盆地模拟,计算不同生油洼陷向各排聚单元的供气量。
(3)计算区带气层气资源量
依据模糊评判原理,对区带的气源丰度、疏导层条件、气源距离、保存条件等进行综合评判,确定各区带聚集系数,计算气层气资源量(表1)。
六、应用效果
根据本次天然气区带资源评价结果,选择具有较高资源潜力的区带进行了亮点勘查和钻探,发现一批较有利的含气圈闭和亮点,建成了天然气产能20×104m3,取得了较好的经济效益和社会效益。
1.坨-胜-永断裂带
坨-胜-永断裂带位于东营凹陷北部,北邻陈家庄凸起,东靠青坨子凸起,西南与利津、民丰洼陷相接,在研究区呈北西向带状分布,有利勘探面积近700km2,由于该断裂带紧邻利津、民丰生油洼陷,具备有利的油气成藏条件。该带自1965年勘探以来,相继发现了一批中浅层气藏。根据区带资源评价结果,坨-胜-永断裂带及陈家庄凸起南缘天然气资源量为110×108m3,探明天然气储量36.1×108m3,剩余资源量为74×108m3。1998~2000年,该区加强天然气勘探,丰气1、丰气斜101、永12-53井相继钻探成功,新建天然气产能9.5×104m3;2001年,在胜北断层二台阶又发现了一批浅层气富集区,预测含气面积24km2,预测天然气地质储量20×108m3。
2.义南地区
义南地区位于义和庄凸起南部,南、东两面与沾化凹陷相邻,自东向西,义南断层由北东向转为近东西向,形成一弧状构造带。义和庄凸起为下古生界寒武—奥陶系灰岩组成的潜山。油气勘探始于1961年,1971~1973年发现馆陶组气藏。经过20多年的勘探,共发现三个含气区,即沾3-沾38、沾4及沾5井区,主力含气层系为东营组、馆陶组、明化镇组。根据本次区带资源评价结果,义和庄凸起及周缘天然气资源量为79×108m3,探明天然气储量11.15×108m3,剩余资源量68×108m3,该区带仍具有较大的资源潜力。1999~2000年,该区天然气勘探发现Ⅰ、Ⅱ类亮点45个,预测含气面积22.4km2,天然气地质储量24.35×108m3;共部署井位11口,试气见气流井9口,新建天然气产能8.0×104m3。
什么是可采储量及剩余可采储量?
计算原油储量与评价原油资源量的基础是地质调查结果——即综合整理地质勘查与油气田开发过程中所获得的所有信息:岩石的矿物学和岩石学特征研究成果、流体的物理性能和物理化学特性、矿产地及矿产地地球物理调查成果、地下矿田的成因条件和位置规律的相关信息、油气地层的岩石物理性质研究成果、试井与测井信息、矿床的矿产地质以及开发过程中的调查研究成果等。
通过下列步骤来完成对信息的综合整理:
1)划分不同的信息单元(地震地质调查的动态单元、区域单元、梯度、矿产变量的统计特征等),在大部分情况下,比数据录入更具有意义;
2)对钻孔数据复杂性的解释和形成参数井数据库(包含描述矿床特征可信赖的信息);
3)确定不同信息单元的组合(与所研究矿床的参数最相关的组合);
4)在信息的综合整理基础上,构建矿床定性和定量特征空间分布的剖面图、地质图及空间区域图;
5)分析所获得模型的可选性,确定可信度评价的数学模型,从地质和数学角度合理选择模型。
一个整合的地质-地球物理信息数据库是构建油气田模型的基础。地质和流体动力模型被用于创建3D模型。前者(地质模型)反映生产层的形成理论,与地球物理测井数据、岩心、流体形成实验室检测结果及地震测量数据一致。流体动力模型则描述了物理化学过程(对一种成因是典型的)的各个特点。最准确地再现油气田形成的地质历史,是流体动力模型的强制性要求。
鉴于上述内容,为计算已经投入运营的油气田的储量,上述两类模型都应重新建立;对于仅完成了勘查工作和正准备开发的油气田,可以只使用静态地质模型。创建流体动力模型的理论与实践,远远超过所提交材料的范畴。因此,在介绍矿床建模与油气资源储量计算方法时,应限于静态地质模型的创建与使用问题,并利用SPE(PRMS)分类体系确定油气田储量计算的性质与主要特征。
用容积法计算原油储量,包括还原到标准状态下,判断在储集油气田的松散空间内油量和游离天然气的体积。容积法是通用方法,可应用于不同类型的储集空间[2,7]。用容积法计算储量,遵循以下三个工作步骤:①详细对比各钻孔剖面;②区分储藏类型,确定成因参数和流体类型;③根据矿床勘查程度,构建静态模型,计算储量。
根据应用到固体矿产的通用方法建立矿床的块模型,从而创建静态模型,计算原油的储量(资源量)是可能的。
计算高类别储量的地段应符合乌克兰《国家地下矿产资源储量分类应用指南》中关于远景区资源及油气田储量的经济-地质研究的要求[4]。例如,为绘制油气储量计算平面图,可根据钻孔的数量,利用以下方法,来圈定储量类别(图7.2-a):
1)围绕第一个钻孔,圈出一个圆圈,其半径等于构造类似的油气田的生产井间距的两倍;
2)围绕两个钻孔,圈划一个矩形,其短边等于生产井间距的两倍,长边的长度并未指定;
3)对于矿田内仅部分区域经过勘探,用直线来限定评价范围,以区分未经勘探的部分,这条直线距相邻钻孔的长度等于生产井网的两倍间距;
4)对于已全部经过勘探的矿田,计算范围的轮廓线为整个矿田。
SPE(PRMS)储量分类体系采用统一方法[21]。证实储量是在围绕钻孔的正方形区域内计算的,该区域油气资源可商业开发。正方形的边长等于生产井网的三倍间距。钻探储量则在更小的方格内评价,其正方形的边长等于生产井网的间距;未钻探储量在其他较大的正方形内评价。矿田内大正方形外的储量为概实储量(图7.2-b)。
在地理信息系统的帮助下,通过在井轴周围构建一定大小的平行六面体,使之与矿田的3D区块模型一致,确定图内区块,并计算原产品的体积,可轻松实现SPE(PRMS)分类体系中所使用的储量类别圈定方法(图7.3)。
区分类别的方法之间的差异,取决于储量计算平面图上这些类别的几何化差异。在乌克兰分类体系中,将矿床资源储量划分为不同的类别,是以矿产地地质勘查阶段为依据;其他分类体系(GRIRSGO、UNFG、PRMS)则采用概率方法来确定矿产储量(资源)的类别。在乌克兰分类体系中,勘查网密度是表征矿产地地质勘查阶段的一项指标;在GRIRSGO分类体系中,这一点由搜索椭球体内样品出现的数量和均匀性所指代;在SPE(PRMS)分类体系中,则代表用于开采油气的生产井网的平均间距。
图7.2 储量计算范围(类别)圈定方法:
(a)根据乌克兰分类体系;(b)根据SPE(PRMS)分类体系
同时,可利用地理信息系统,在某一特定矿床模型内区别不同矿产储量(资源量)分类体系的类别。这包括以下两个步骤:第一,根据具体分类体系的要求,创建模型并迸行计算;第二,计算一种分类体系中的储量,并将其转化为其他分类体系的储量类别(兼容)。
在本文前面的章节中,对基本分类体系的细节以及不同分类体系的资源储量类(级别)比较方法迸行了详细分析,可作为不同分类体系矿产储量(资源量)类别转换与对比的信息模块的基础。
图7.3 考虑SPE(PRMS)分类体系的油气储量计算:
(a)计算平面图上范围的圈定;(b)确定储层中的油气储量
石油天然气关键参数研究与获取
石油及天然气可采储量是指一个油(气)田(藏)在当前工业技术条件下可采出的油(气)量。可采储量不仅与油(气)藏类型、储层物性、流体性质、驱动类型等自然条件有关,而且与布井方式、注入方式、采油工艺、油(气)田管理水平以及经济条件等人为因素有关。以探明程度区分的地质储量为基础,相应地亦可分为证实的、概算的和可能的石油(天然气)可采储量。可采储量(Reserves)的分类与地质储量(OOIP)的分类有一致性,但也有它的特殊性。按照SPE及世界石油大会标准,可采储量的分类也分为P1(Proven reserves)、P2(Probable reserves)、P3(Possible reserves),这与地质储量是一样的。可采储量的特殊性在于它与油田开发的生产状况和经济合理性紧密相连,特别是对证实的可采储量(P1)定义比较严格,不一定和地质储量的分类有一致性。如果按照美国证券交易委员会(SEC)的标准,假如已证实了的P1地质储量如果还闲置着,还没有开发方案,根据油气藏的地质因素预计的一次可采储量只能算入P2可采储量;如果考虑到该油藏有可能开展二次采油,但没有任何试验加以证实,这种二次采油增加的估算也可能算入P3的可采储量。只有经过试验证明了的、已经具有了开发方案并经过批准、已投入生产的才能算入已开发生产的P1可采储量。
中国石油天然气股份有限公司应用的可采储量体系技术可采储量 技术可采储量是指依靠现在的工业技术条件可能采出,但未经过经济评价的可采储量。通常以某一平均含水界限(如98%)、某一平均油气比(如2000立方米/吨或10000立方英尺/桶)、某一废弃压力界限或某一单井最低极限日采油(气)量为截止值计算的可采出油(气)量,这称为最终可采储量。如果考虑某一特定评价期(合同期)的总可采储量,是根据油井递减率动态法或数值模拟方法计算到评价期截止日的可采出油(气)量。
剩余可采储量 剩余可采储量是指一个油(气)田(藏)投入开发,并达到某一开发阶段,可采储量减去该阶段累计采出油(气)量的剩余值。
经济可采储量 经济可采储量是指经过经济评价认定、在一定时期内(评价期)具有商业效益的可采储量。通常是在评价期内参照油气性质相近著名的油(气)田发布的国际油(气)价和当时的市场条件进行评价,确认该可采储量投入开采技术上可行、经济上合理、环境等其他条件允许,在评价期内储量收益能满足投资回报的要求,内部收益率大于基准收益率(公司最低要求)。
一个国际合作开发的工程项目(合同区或油气田),经过经济评价认定具有商业价值的可采储量是该项目合作双方共同拥有的经济可采储量,称为合同区或油气田经济可采储量,该经济可采储量不包括合作前采出的累计油气量,也不包括合同期以后还可能采出的油气量。
权益的经济可采储量 在国际合作的油田开发项目中,任何一方按照双方合作合同规定并遵循国家有关法规,从某一方的角度来考察项目的经济效益,经过经济评价认定具有商业价值的可采储量是该方的权益经济可采储量。
在国际合作中,合同区或油气田评价的计算期是从双方合作油气田正常投产起,经过回收期、收益高峰期、收益衰减期,直至合同期终结为止。
不同评价期计算的经济可采储量可能发生动态性的变化。原来计算的经济可采储量由于后来的市场条件或开采条件恶化(如价格下降、成本增加、递减率加大、增加评价井后发现地质储量减少、油气井事故废弃等),经过重新评价有可能变少;原来认为没有经济价值的可采储量,由于后来技术、经济、环境等条件改善或政府给予其他扶持政策,经过重新评价有可能变为经济的可采储量。
天然气储量够用多少年?
评价参数直接影响评价方法的有效性,不同类型的参数作用不同。有效烃源岩有机碳下限、产烃率图版、运聚系数是成因法的关键参数;最小油气田规模对统计法计算结果有较大影响;油气资源丰度是应用类比法的依据,由已知区带的油气资源丰度评价未知区带的资源丰度;可采系数是将地质资源量转化成可采资源量的关键参数。
(一)刻度区解剖
1.刻度区的定义
刻度区解剖是本次资源评价的特色之一,也是油气资源评价的重要组成部分。刻度区解剖的目的是通过对地质条件和资源潜力认识较清楚的地区的分析,总结地质条件与资源潜力的关系,建立两者之间的参数纽带,进而为资源潜力的类比分析提供参照依据。
刻度区是为取准资源评价关键参数,以保证资源评价的客观性而选择的满足“勘探程度高、资源探明率高、地质认识程度高”三高要求的三维地质单元。刻度区可以是一个盆地(凹陷)、一个油气运聚单元、一个区带、一个成藏组合、一个层系或一个二级构造带等。为了正确和客观认识地质条件和资源潜力,刻度区的选取在考虑“三高”条件的基础上,应尽量考虑不同地质类型的综合,这样可以更充分体现油气资源丰度与地质因素之间的关系。
2.刻度区解剖内容与方法
刻度区解剖主要围绕油气成藏条件、资源量及参数三个核心展开,剖析三者之间的关联规律和定量关系。
(1)成藏特征和成藏主控因素分析。成藏特征和成藏主控因素分析实质上是对选择的刻度区进行成藏特征总结,精细刻画出成藏的定性、定量的主控因素与参数,便于评价区确定类比对象。在一个含油气盆地、含油气系统、坳陷、凹陷的成藏规律刻画中,其成藏特征差异大,故一般最好选择以含油气系统(或坳陷)及其间的运聚单元作为对象,更便于有效的类比应用。油气运聚单元是盆地(凹陷)中具有相似油气聚集特征的独立的和完整的石油地质系统,是以盆地(凹陷)的油气聚集带为核心,并包含为该油气聚集带提供油气源的有效烃源岩。油气运聚单元是有效烃源岩、油气运移通道、有效储集层、有效盖层、有效的圈闭等要素在时间和空间上的有机组合。一个油气运聚单元可以有多个有效烃源岩体和烃源岩区为其供烃,但同一个油气运聚单元的油气聚集特征是相似的。一个油气运聚单元可以只包含一个油气成藏组合,也可以包含在纵向上叠置的多个油气成藏组合。因此刻度区地质条件的评价与定量刻画就是按照运聚单元→成藏组合→油气藏的层次路线综合分析烃源条件、储层条件、圈闭条件、保存条件以及配套条件等油气成藏条件。盆地模拟是地质评价流程中的一个重要组成部分,其作用主要体现在三个方面:其一是通过盆地模拟反映流体势特征,进而确定油气运聚单元的边界;其二是提供烃源参数,如生烃强度、生烃量、有效烃源岩面积等;其三是通过关键时刻的获取来反映油气成藏的动态作用过程。
(2)油气资源量确定。刻度区资源量计算与一般意义上的资源量计算稍有不同,正是由于刻度区的“三高”背景,特别是选定的刻度区探明程度越高越好,计算出的资源量更准确有利于求准各类评价参数。在本次刻度区解剖研究中,主要采用了统计法来计算刻度区的资源量,统计法中包括油藏规模序列法、油藏发现序列法、年发现率法、探井发现率法、进尺发现率法以及老油田储量增长法,不同方法估算出的资源量采用特尔菲加权综合。盆地模拟在计算生烃量方面技术已经比较成熟,因此刻度区(运聚单元)的生烃量仍由盆地模拟方法计算。
(3)油气资源参数研究。通过刻度区解剖,建立了参数评价体系和预测模型,获得了地质条件定量描述参数、资源量计算参数和经济评价参数,如运聚系数、资源丰度等关键参数。从刻度区获得的资源量与生油量之比可计算出运聚系数,刻度区的资源量与面积之比可获得单位面积的资源丰度,还可得到其他参数等。由于盆地内坳陷(凹陷)内各单元成藏条件差异,求得的参数是不同的,故细分若干运聚单元,求取不同单元的参数,这样用于类比区会更符合实际。
3.刻度区研究成果与应用
通过刻度区解剖研究,系统地获得运聚系数、油气资源丰度等多项关键参数,为油气资源评价提供各类评价单元类比参数选取的标准,保证评价结果科学合理。如中国石油解剖的辽河坳陷大民屯凹陷级刻度区,通过对其烃源条件、储层条件、圈闭条件、保存条件以及配套条件五方面精细研究,获得了22项量化的成藏条件的系统参数。根据大民屯凹陷内划分的六个运聚单元,分别计算各单元的生油量和资源量,直接获得六个单元的运聚系数。同时计算出各运聚单元单位面积的资源量,获得不同成藏条件下的资源丰度参数(表4-5)。
表4-5 大民屯凹陷刻度区解剖参数汇总表
在中国石油128个刻度区的基础上,各单位根据评价需要,又解剖了一定数量的刻度区。其中,中国石油利用已有刻度区128个,新解剖刻度区4个,共应用132个;中石化新解剖42个;中海油新解剖4个;延长油矿新解剖3个。各项目共应用了181刻度区,这些刻度区涵盖了我国主要含油气盆地中的大部分不同类型的坳陷、凹陷、运聚单元和区带,基本满足了不同评价区的需要。各种类型刻度区统计见表4-6。
表4-6 各种类型刻度区统计表
(二)有效烃源岩有机碳下限
有效烃源岩有机碳下限是指烃源岩中有机碳含量的最小值,小于该值的烃源岩生成的烃量不能形成有规模的油气聚集。有效烃源岩有机碳下限是确定烃源岩体积的主要参数,直接影响生烃量的计算结果。
在大量烃源岩样品分析化验和有关地质资料研究基础上,明确了不同岩类有效烃源岩有机碳下限标准。陆相泥岩有效烃源岩有机碳下限为0.8%,海相泥岩为0.5%,碳酸盐岩为0.2%~0.5%,煤系源岩为1.5%。例如,陆相泥岩TO C与S1+S2关系表明,S1+S2在TO C为0.8%时出现拐点,有效烃源岩有机碳下限定为0.8%;碳酸盐岩气源岩残余吸附气量与有机碳关系表明,残余吸附气量在有机碳为0.2%处出现拐点,有效烃源岩有机碳下限定为0.2%(图4-1、图4-2)。
图4-1 陆相泥岩TOC与S1+S2关系图
图4-2 碳酸盐岩气源岩残余吸附气量与有机碳关系图
对于勘探实践中已经发现油气藏,但烃源岩有机碳含量未达统一下限的盆地,根据实际情况可进行适当调整。如柴达木盆地柴西地区,在分析了大量烃源岩有机碳和S1+S2指标资料后,明确该区有机碳含量下限为0.4%时,即达到有效烃源岩标准,并被发现亿吨级尕斯库勒大油田的勘探实践所证实。在渤海湾盆地评价过程中,建立起相对统一的有效烃源岩丰度取值下限标准:碳酸盐岩气源岩丰度下限取0.2%,碳酸盐岩油源岩丰度下限取0.5%,湖相泥岩丰度下限取1.0%。
有效烃源岩有机碳下限的基本统一,保证了生烃量计算标准的相对一致和全国范围内的可比。
(三)产烃率图版
烃源岩产烃率图版是用盆地模拟方法计算烃源岩生烃量和资源量的关键参数。产烃率图版一般采用烃源岩热模拟实验方法获得。
1.液态烃产率图版
利用密闭容器加水热模拟实验方法,对中国陆相盆地不同类型烃源岩进行了热模拟实验。模拟实验所用样品取自松辽、渤海湾等10个盆地,包括侏罗系、白垩系和古近系的湖相泥岩、煤系泥岩和煤3大类烃源岩。其中湖相泥岩烃源岩的有机质类型包括Ⅰ型、Ⅱ1型、Ⅱ2型和Ⅲ型,煤系泥岩烃源岩的有机质类型包括Ⅱ2型和Ⅲ型,煤烃源岩的有机质包括Ⅱ1型、Ⅱ2型和Ⅲ型。根据模拟实验结果,编制了不同类型烃源岩的液态烃产率图版(图4-3、图4-4、图4-5)。
图4-3 湖相泥岩烃源岩液态烃产率图版
图4-4 煤系泥岩烃源岩液态烃产率图版
图4-5 煤烃源岩液态烃产率图版
2.产气率图版
由于生物气生气机制与干酪根成气和原油热裂解气的生气机制不同,因此,其产气率与干酪根和原油裂解气产气率求取方式不同。
(1)生物气产气率。对生物气源岩样品在25℃~75℃的条件下进行细菌培养产生生物气,由此得到不同温阶下各类有机质的生物气产率。在模拟实验结果的基础上,结合前人的研究结果,分别建立了淡水环境、滨海环境和盐湖环境中不同类型有机质的生物气产气率图版及演化模式。
(2)干酪根和原油裂解气产气率。对于不同类型气源岩油产气率,国内外学者及一、二轮资源评价中已做过大量的工作。较多的实验是应用热压模拟方法对各种类型烃源岩进行产油及产气率实验,这种方法所计算的产气率包括了原油全部裂解成气的产率,亦即常说的封闭体系下源岩的产气率,所得到的天然气产率是气源岩的最大产气率。另一种求取气源岩产气率的方法是在开放体系下对源岩进行热模拟实验,各阶段生成的天然气和原油均全部排出源岩,原油不能在源岩中进一步裂解为天然气。这两种情况都是地质中的极端情况。但是实际的地质条件大多是半开放体系,在这种情况下,源岩生成的油既不能全部排出烃源岩,也不能完全滞留于源岩中。不同地质条件下亦即开放程度不同情况下源岩产气率如何计算?具体方法为:求得封闭和开放体系下相同类型源岩的产气率,将上述两种体系下的产气率图版(中值曲线)输入盆地模拟软件中,得出烃源岩层在不同渗透条件下产气率图版。
(四)运聚系数
运聚系数是油气聚集量占生烃量的比例,是成因法计算资源量的一个关键参数,直接影响资源量计算结果。运聚系数的确定方法包括运聚系数模型建立法和运聚单元成藏条件分析法。
1.运聚系数模型建立法
通过刻度区解剖,确定影响运聚系数的主要地质因素及其与运聚系数的相关关系。刻度区解剖研究表明,烃源岩的年龄、成熟度、上覆地层区域不整合的个数和运聚单元的圈闭面积系数等地质因素与石油运聚系数之间存在相关关系。依此建立地质因素与石油运聚系数之间关系的统计模型,包括双因素模型和多因素模型。双因素模型(相关系数为0.922)的地质因素选用烃源岩年龄和圈闭面积系数:
lny=1.62-0.0032x1+0.01696x4
多因素模型(相关系数为0.934)的地质因素选用烃源岩年龄、烃源岩的成熟度、区域不整合个数和圈闭面积系数:
lny=1.487-0.00318x1+0.186x2-0.112x3+0.02118x4
式中:y——运聚单元的石油运聚系数,%;
x1——烃源岩年龄,Ma;
x2——烃源岩成熟度(Ro),%;
x3——不整合面个数;
x4——圈闭面积系数,%。
2.运聚单元成藏条件分析法
依据刻度区提供的大量运聚系数,依盆地类型和影响运聚系数的主要地质因素,分类建立运聚系数取值标准与应用条件。在评价中,根据刻度区解剖结果,确定了油气运聚系数分级取值标准(表4-7)。在评价中得到了推广应用,取得了良好的效果。
表4-7 石油运聚系数分级评价表
(五)最小油气田规模
最小油气田规模是指在现有工艺技术和经济条件下开采地下资源,当预测达到盈亏平衡点时的油气田可采储量。最小油气田规模对统计法计算的资源量结果有较大影响。为此,中国石油天然气集团公司等三大石油公司和延长油矿管理局对最小油田规模进行了专门研究。
通过对不同油价、不同开发方式和未来可能技术条件下最小油气田规模研究,确定了不同地区的最小油气田规模的取值。在地理环境相对较好的东部地区,其勘探开发成本较低,最小油气田规模一般在10×104~30×104t,在地理环境相对较差的西部地区,其勘探开发成本高,最小油气田规模一般在50×104t以上,对于海域来说,油气勘探开发成本更高,最小油气田规模更大,一般在150×104~500×104t。
(六)资源丰度
油气资源丰度是指每平方公里内的油气资源量,是类比法计算资源量的关键参数。通过统计分析,建立了资源丰度模型和取值标准。
1.资源丰度模型
通过刻度区解剖,建立刻度区内评价单元油气资源丰度和相关地质要素之间的统计预测模型:
新一轮全国油气资源评价
式中:y——运聚单元的石油资源丰度,104t/km2;
x1——烃源岩生烃强度,104t/km2;
x2——储集层厚度/沉积岩厚度,小数;
x3——圈闭面积系数,%;
x4——不整合面个数。
2.资源丰度取值标准
通过统计不同含油气单元资源丰度的分布特点,结合地质成藏条件,总结出各类刻度区资源丰度的取值标准。
(1)不同层系资源丰度:古近系凹陷由于成藏条件优越,成藏时间晚,石油地质资源丰度一般大于20×104t/km2;中生代凹陷成藏时间相对较长,石油地质资源丰度相对较低,一般约为10×104t/km2;古生代凹陷由于生、储层时代老,多期成藏多期改造、破坏,预计其资源丰度更低。
(2)不同类型运聚单元资源丰度:中新生代断陷或坳陷盆地长垣型、潜山型和断陷型中央背斜构造型,石油地质资源丰度高,一般大于40×104t/km2;中新生代裂陷盆地、坳陷盆地边缘构造型和古近系缓坡构造型石油资源丰度次之,一般为10×104~30×104t/km2;中生代盆地岩性型和古生代压陷盆地的构造型石油资源丰度相对较低,一般小于10×104t/km2。
(3)不同区块或区带级资源丰度:区块或区带级石油资源丰度差异更大,从小于1×104t/km2到大于200×104t/km2。其中潜山型、岩性—构造型、披覆背斜区块资源丰度较高,一般大于50×104t/km2,最大可大于200×104t/km2。构造—岩性型、断裂构造型资源丰度一般为30×104~50×104t/km2。地层—岩性型、断鼻型以及裂缝型区块、资源丰度较低,一般小于30×104t/km2。
通过刻度区解剖标定多种成藏因素下评价单元的资源丰度,不但为广泛应用类比法计算资源量提供了可靠的参数,同时也摆脱了过去以盆地总资源量为基础,利用地质评价系数类比将资源量分配到各评价单元的做法,使类比法预测的油气资源量在空间位置上更准确,提高了油气资源空间分布的预测水平。
(七)可采系数
国外主要采用建立在类比基础上的统计法计算油气可采资源量,而我国第一轮、第二轮全国油气资源评价没有计算油气可采资源量。本轮评价开展的油气资源可采系数研究,通过可采系数将地质资源量转化为可采资源量,这在国内外油气资源评价中尚属首次。可采系数是指地质资源中可采出的量占地质资源量的比例,是从地质资源量计算可采资源量的关键参数。
可采系数研究与应用是常规油气资源评价的重要组成部分,主要目的是通过重点解剖、统计和类比分析方法,对我国油气资源可采系数进行研究,为科学合理地计算油气可采资源量提供依据,进而对重点盆地和全国油气可采资源潜力进行评价。
1.评价单元类型划分
为使可采系数研究成果与评价单元划分体系有机结合,遵循分类科学性、概括性和实用性三个基本原则,以油气资源类型、盆地类型、圈闭类型、储层岩性、储层物性等地质因素为依据,对评价单元进行了分析和分类,将国内石油评价单元分为中生代坳陷高渗、古近纪与新近纪断陷盆地复杂断块高渗等24种类型,天然气评价单元分为克拉通盆地古隆起、前陆盆地冲断带等16种类型(表4-8、表4-9)。
表4-8 不同类型评价单元石油可采系数取值标准
表4-9 不同类型评价单元天然气可采系数取值标准
2.刻度油气藏数据库的建立
已发现油气资源赋存在油气藏中,建立刻度油气藏数据库是统计已发现油气资源采收率、分析影响采收率主控因素、预测油气资源可采系数的基础。刻度油气藏是油气资源可采系数研究中作为类比标准的,地质认识清楚、开发程度高、已实施二次采油或三次采油技术的油气藏。
刻度油气藏选择原则:①典型性——能代表国内外主要的油气藏类型,保证类比法应用基础的广泛性;②针对性和实用性——针对油气资源评价,有效地指导相应类型评价单元油气资源可采系数的确定;③开发程度高——油气藏开发程度高,地质参数和开发参数基本齐全;④三次采油技术应用具有代表性——尽量选择已实施三次采油技术的油藏,保证技术可采系数的可靠性。
对国内43个油藏、30个气藏,国外59个油藏、22个气藏进行了剖析:收集整理每个油气藏的主要地质和开发参数;每个油气藏的地质条件主要包括储层特征、圈闭条件、流体性质等,开发条件主要包括开采方式、开采速度、增产措施等;研究不同因素对采收率的影响程度,进而确定该油气藏采收率的主控因素;针对开采方式的不同,油藏的采收率可分为一次、二次或三次采收率;气藏主要是一次采收率。通过对每个油气藏的地质条件、开发条件和采收率进行分析,建立起国内外刻度油气藏数据库。
3.可采系数主控因素分析
对影响可采系数的地质条件、开发条件和经济条件进行了分析,建立起可采系数主控因素的评价模型。
(1)在大量统计和重点解剖的基础上,对油气地质条件中的因素逐一进行分析,并提炼出15项油气采收率的主控因素,即盆地类型、储层时代、圈闭类型、沉积相类型、储层岩性、储层厚度、储集空间类型、孔隙度、渗透率、埋深、含油饱和度、原油粘度、原油密度、变异系数、原始气油比。
(2)在诸多开发条件中,提高采收率技术是极为重要的因素,不同提高采收率技术适用条件不同,其提高采收率的潜力也差距很大。通过综合分析,主要技术对不同类型油藏的提高采收率潜力为:最小5%,中间值10%,最大值15%。
(3)利用石油公司提高采收率模拟研究成果,建立了大型背斜油藏、复杂背斜油藏、断块油藏、岩性油藏、复杂储层油藏等在税后内部收益率为12%、油田开发到含水95%时聚合物驱和化学复合驱采油时的油价与油田采收率之间的关系,若这五类油藏要达到相同的采收率,条件好的如大型背斜油藏、复杂背斜油藏所需的油价低于条件差的如岩性油藏、复杂储层油藏。
4.可采系数取值标准的建立
在研究中,解剖了国内43个油藏、30个气藏,国外59个油藏、22个气藏,统计分析了大量油气田采收率数据,给出了不同类型评价单元油气技术可采系数和经济可采系数取值范围,建立了不同类型评价单元油气可采系数取值标准(表4-8、表4-9)。
(1)不同类型评价单元石油可采系数相差较大,以技术可采系数为例:中生代坳陷高渗和古近纪与新近纪断陷盆地复杂断块高渗评价单元可采系数最大,其中间值大于40%;中生代坳陷中渗、古近纪与新近纪断陷盆地复杂断块中渗、中生代断陷、中新生代前陆、古生界潜山、古生界碎屑岩、古近纪残留型断陷、陆缘裂谷断陷古近纪与新近纪海相轻质油、陆缘弧后古近纪与新近纪海陆交互相轻质油等评价单元可采系数为30%~40%;中生代坳陷低渗、古近纪与新近纪断陷盆地复杂断块低渗、古生界缝洞、南方古近纪与新近纪中小盆地、低渗碎屑岩、重(稠)油中高渗、变质岩、砾岩、陆内裂谷断陷新近纪重质油、陆内裂谷断陷古近纪复杂断块等评价单元可采系数为20%~30%;低渗碳酸盐岩、重(稠)油低渗、火山岩等评价单元可采系数为15%~20%。
(2)不同类型评价单元天然气可采系数相差也较大:克拉通碳酸盐缝洞、礁滩和前陆冲断带等评价单元可采系数最大,其平均值大于70%;克拉通古隆起、克拉通碎屑岩、前陆前渊、南方中小盆地、陆缘断陷、火山岩、变质岩和海域古近纪与新近纪砂岩等评价单元可采系数为60%~70%;前陆斜坡、生物气、中生代坳陷、古近纪与新近纪断陷盆地复杂断块、残留断陷、砾岩等评价单元可采系数为50%~60%;致密砂岩等评价单元可采系数最小,其平均值小于50%。
5.可采系数计算方法的建立
可采系数计算方法包括可采系数标准表法和刻度区类比法两种方法。
(1)标准表取值法。利用可采系数标准表求取不同评价单元可采系数的步骤如下:在不同类型评价单元可采系数取值标准表中找到已知评价单元的所属类型;明确评价单元与可采系数相关因素(宏观、微观)的定性、定量资料;对照可采系数的类比评分标准表和类比评分计算方法,对评价单元进行类比打分;根据类比评价结果求取可采系数。
(2)刻度区类比法。以建立的国内外刻度油气藏数据库为基础,利用刻度区类比法来求取不同评价单元的可采系数。具体步骤如下:根据评价单元分类标准,将具体评价单元归类,并分析整理该评价单元的油气地质条件和开发条件;根据评价单元的类型及其地质条件和开发条件,从国内外刻度油气藏数据库选择适合的类比对象;对照可采系数的类比评分标准表和类比评分计算方法,对该评价单元及其类比对象进行打分并计算它们的得分差值;根据得分差值求取该评价单元的可采系数。
通过油气可采系数标准和计算方法在全国129个盆地中的推广应用,既检验了可采系数取值标准和所用基础数据的可靠性、可行性和适用性,保证了油气可采资源量计算的客观性,又获得了全国油气可采资源量。
石油技术可采储量的计算
如果按照每年使用量增幅为2%-3%来计算的话,剩余的天然气大约只能用80到100年了。一方面是天然气的探明储量在不断增长,另一方面作为替代能源的可再生能源也在迅猛增长中。
现在世界上大量天然气来源于非常规天然气,比如页岩气,煤层气,这些资源未探明还很多,包括南海的可燃冰资源,还不具备开采条件,所以天然气实际上可用更多年,并且俄罗斯和中亚缅甸已经开式进口天然气了,液化天然气进口量也很大,所以不用担心天然气未来的前景。
天然气是属于不可再生能源,因为天然气不可以进行第二次利用。
天然气是一种碳氢化合物,多是在矿区开采原油时伴随而出, 过去因无法越洋运送,所以只能供当地使用,如果有剩馀只好燃烧报废,十分可惜。若以人工建筑设施存放天然气,在遭到外力破坏如地震、火灾等,极易产生危险。若以人工建筑设施存放天然气,在遭到外力破坏如地震、火灾等,极易产生危险。
根据中华人民共和国石油天然气行业标准 《石油可采储量计算方法》 (SY/T5367-1998),可采储量的计算方法共10类18种方法,每种方法都有各自的适用范围和局限性。应根据油藏开发阶段和开发方式等具体条件选取适用的方法。本部分对砂岩油藏可采储量的常用计算方法进行详细阐述。其他类型油藏可采储量的计算方法可参阅中华人民共和国石油天然气行业标准 《石油可采储量计算方法》及有关书籍。
1. 开发初期油田可采储量的计算方法
开发初期是指油田的建设期或注水开发油田中低含水期。此阶段,油田动态资料少,油藏开采规律不明显。计算可采储量的方法有经验公式法、类比法、流管法、驱油效率-波及系数法、数值模拟法及表格法。矿场上经常采用的计算方法是经验公式法、类比法及表格法。
(1) 经验公式法
经验公式法是利用油藏地质参数和开发参数评价油藏采收率,然后计算可采储量的简易方法。应用该法时,重要的是了解经验公式所依据的油田地质和开发特征以及参数确定方法和适用范围。
美国石油学会采收率委员会阿普斯 (J. J. Arps) 等人,从1956年开始到1967年,综合分析和统计了美国、加拿大、中东等产油国的312个油藏的资料。根据72个水驱砂岩油田的实际开发资料,确定的水驱砂岩油藏采收率的相关经验公式为:
油气田开发地质学
式中:ER——采收率,小数;φ——油层平均有效孔隙度,小数;Swi——油层束缚水饱和度,小数;Boi——原始地层压力下的原油体积系数,小数; ——油层平均绝对渗透率,10-3μm2;μwi——原始条件下地层水粘度,mPa·s;μoi——原始条件下原油地下粘度,mPa·s;pi——原始油层压力,MPa;pa——油藏废弃时压力,MPa。
上式适用于油层物性好、原油性质好的油藏。
1977~1978年B·C·科扎肯根据伏尔加-乌拉尔地区泥盆系和石炭系沉积地台型42个水驱砂岩油藏资料,获得以下经验公式:
油气田开发地质学
式中:μR——油水粘度比;Cs——砂岩系数;Vk——渗透率变异系数;h——油层平均有效厚度,m;f——井网密度,ha/口;其余符号同前。
该经验公式复相关系数R=0.85,适用于下列参数变化范围:μR=0.5~34.3;
油气田开发地质学
(109~3200) ×10-3μm2;Vk=0.33~2.24;h=2.6~26.9m;Cs=0.51~0.94;f=7.1~74ha/口。1978年,我国学者童宪章根据实践经验和统计理论,推导出有关水驱曲线的关系式,并将关系式和油藏流体性质、油层物性联系起来,推导出确定水驱油藏原油采收率的经验公式:
油气田开发地质学
式中: —束缚水条件,油的相对渗透率与水的相对渗透率比值;μo——地层原油粘度,mPa·s;μw——地层水粘度,mPa·s。
上式的优点是简单,式中两个主要因素:一是油水粘度比,很易测定;另一个因素油、水相对渗透率比值,可以根据相对渗透率曲线间接求得。
1985年我国石油专业储量委员会办公室利用美国和前苏联公布的109个和我国114个水驱砂岩油藏资料进行了统计研究。利用多元回归分析,得到了油层渗透率和原油地下粘度两者比值 (影响采收率的主要因素),与采收率的相关经验公式:
ER=21.4289(K/μo)0.1316
上式适合我国陆相储层岩性和物性变化大、储层连续性差及多断层的特点,计算精度较高。
(2) 驱油效率-波及系数法
驱油效率可以用岩心水驱油实验法和分析常规岩心残余油含量法。
1) 岩心水驱油实验法:用岩心进行水驱油的实验,是测定油藏水驱油效率的基本方法之一,可直接应用从油层中取出的岩心做实验,也可以用人造岩心做实验。具体方法是将岩心洗净烘干后,用地层水饱和,然后用模拟油驱水,直到岩心中仅有束缚水为止。最后用注入水进行水驱油实验,模拟注水开发油藏的过程,直到岩心中仅有残余油为止。水驱油效率为:
油气田开发地质学
式中:ED——水驱油效率,小数;Sor——残余油饱和度,小数;Soi——原始含油饱和度,小数。
2) 分析常规岩心残余油含量法:取心过程中,钻井液对岩心的冲洗作用,与注水开发油田时注入水的驱油过程相似。可以认为钻井液冲洗后的岩心残余油饱和度,与水驱后油藏的残余油饱和度相当。因此,只需要分析常规取心的残余油饱和度就能求出油藏注水开发时的驱油效率。即:
油气田开发地质学
式中:β——校正系数,其余符号同前。
原始含油饱和度的求取本章已有叙述。残余油饱和度的测定方法通常有蒸馏法、色谱法及干馏法。由于岩心从井底取到地面时,压力降低,残余油中的气体分离出来,相当于溶解气驱油,使地面岩心分析的残余油饱和度减小,所以应进行校正,β一般为0.02~0.03。
用分析常规岩心的残余油含量来确定水驱油效率,简便易行。但是实际上,取心过程与水驱油过程有差别,用残余油饱和度法求得的水驱油效率往往较油田实际值低。
上述两种方法求得的驱油效率乘以注水波及系数,即为水驱采收率。
波及系数是水驱油的波及体积与油层总体积之比。水驱波及系数与油层连通性、非均质性、分层性、流体性质、注采井网的部署等都有密切的关系。连通好的油层,水驱波及系数可以达到80%以上;连通差的油层和复杂断块油藏,往往只有60%~70%。
(3) 类比法
类比法是将要计算可采储量的油藏同有较长开发历史或已开发结束的油藏进行对比,并借用其采收率,进行可采储量计算。油藏对比要同时比较地质条件和开发条件,才能使对比结果接近实际。地质条件包括油藏的驱动类型、储层物性、流体性质及非均质性。开发条件包括井网密度、驱替方式及所采用的工艺技术等。
(4) 表格计算法
表格计算法是根据油气藏的驱动类型,参照同类驱动油藏的采收率,根据采收率估算的经验,给定某油藏的采收率值,估算其可采储量。
油气藏的驱动类型是地层中驱动油、气流向井底以至采出地面的能量类型。油气藏的驱动类型可分为弹性驱动、溶解气驱、水压驱动、气压驱动、重力驱动。油气藏的驱动类型决定着油气藏的开发方式和油气井的开采方式,并且直接影响着油气开采的成本和油气的最终采收率。所以一个油气田在其投入开发之前,必须尽量把油气藏的驱动类型研究清楚。
油气藏驱动类型对采收率的影响是很大的,但是同属一个驱动类型的油气藏,由于各种情况的千差万别,其采收率不是固定的,而是存在着一个较大的变化范围。表7-3给出油藏在一次采油和二次采油时,不同驱动类型采收率的变化范围。
表7-3 油藏采收率范围表
表7-3所列出油气藏不同驱动类型时采收率值的范围,是由大量已开发油气田所达到最终采收率的实际统计结果而得出的。油藏三次采油注聚合物等各种驱油剂的最终采收率范围,则是依据实验室大量驱替试验结果得出的。不论是实际油气田的统计值还是驱替试验结果,均未包括那些特低或特高值的情况。仅由表中所列的数值范围就可看出,油气藏不同驱动类型之间最终采收率相差很大,就是同一驱动类型的油气藏相差也悬殊。
(5) 流管法
流管法由于计算过程烦琐,矿场上不常用,因篇幅所限,此处不作介绍。
(6) 数值模拟法
数值模拟法适用于任何类型、任何开发阶段及任何驱替方式的油藏。开发初期,油藏动态数据少,难以校正地质模型,用数值模拟方法只能粗略计算油藏的可采储量。
2. 开发中后期可采储量的计算方法
开发中后期是指油田含水率大于40%以后,或年产油量递减期。开发中后期可采储量的计算方法主要有水驱特征曲线法、产量递减曲线法、童氏图版法。
(1) 水驱特征曲线法
所谓水驱特征曲线,是指用水驱油藏的累积产水量和累积产油等生产数据所绘制的曲线。最典型的是以累积产水量为纵坐标,以累积产油量为横坐标所绘制的单对数曲线。
根据行业标准SY/T5367-1998,水驱特征曲线积算可采储量共分为6种基本方法,加上童氏图版法,共7种方法。
1) 马克西莫夫-童宪章水驱曲线:此曲线常称作甲型水驱曲线,一般适用中等粘度(3~30mPa·s) 的油藏。其表达式为:
lgWp=a+bNp
可采储量计算中,以实际的累积产水量为纵坐标,以累积产油量为横坐标,将数据组点在半对数坐标纸上。利用上式进行线性回归,得到系数a和b。然后利用下式计算可采储量:
油气田开发地质学
计算技术可采储量时,一般给定含水率fw=98%,计算对应于含水率98%时的累积产油量即为油藏的技术可采储量。
2) 沙卓诺夫水驱曲线:沙卓诺夫水驱曲线适用于高粘度 (大于30mPa·s) 的油藏。表达式为:
lgLp=a+bNp
以油藏实际的累积产液量为纵坐标,以累积产油量为横坐标,数据组点在半对数坐标纸上,进行线性回归,得到上式中的系数a和b。同理给定含水率98%,计算油藏的可采储量,计算公式如下:
油气田开发地质学
3) 西帕切夫水驱曲线:此种曲线适用于中等粘度 (3~30mPa·s) 油藏。表达式为:
油气田开发地质学
对应的累积产油量与含水率的关系式为:
油气田开发地质学
4) 纳扎洛夫水驱曲线:此种水驱曲线适用于低粘度 (小于3mPa·s) 的油藏。其表达式为:
油气田开发地质学
对应的累积产油量与含水率的关系式为:
油气田开发地质学
5) 张金水水驱曲线:此种水驱曲线适用于任何粘度、任何类型的油藏。其表达式为:
油气田开发地质学
对应的累积产油量与含水率的关系式为:
油气田开发地质学
6) 俞启泰水驱曲线:俞启泰水驱曲线适用于任何粘度、任何类型的油藏。其表达式为:
油气田开发地质学
对应的累积产油量与含水率的关系式为:
油气田开发地质学
7) 童氏图版法:童氏图版法也是基于二相渗流理论推导出的经验公式,其含水率与采出程度的关系表达式为:
油气田开发地质学
以上七个公式中:Wp——累积产水量,104t;Np——累积产油量,104t;Lp——累积产液量,104t;fw——综合含水率,小数;R——地质储量采出程度,小数;ER——采收率,小数。
利用童氏图版法计算可采储量,首先是依据如下图版 (图7-14),将油藏实际的含水率及其对应的采出程度绘制在图版上,然后估计一个采收率值。最后由估计的采收率和已知的地质储量,计算油藏的可采储量。一般童氏图版法不单独使用,而是作为一种参考方法。
图7-14 水驱油田采收率计算童氏图版
前述1~6种方法均是计算可采储量常用的方法。但对某个油藏,究竟选取哪种方法合理,不能单纯凭油藏的原油粘度来选择方法。要根据油田开发状况综合考虑,避免用单一因素选择的局限性。一般的做法是:首先,根据原油粘度选择一种或几种计算方法,计算出油藏的可采储量和采收率。然后,参考童氏图版法,看二者的采收率值是否接近。若二者取值接近,说明生产数据的相关性好。但所计算的可采储量是否符合油田实际,还要根据油藏类型及开发状况进行综合分析。若经过分析认为所计算的可采储量不合理,则还要用其他方法进行计算。
(2) 产油量递减曲线法
任何一个规模较大的油田,按照产油量的变化,大体上可以将其开发全过程划分为3个阶段,即上产阶段、稳产阶段及递减阶段。但有些小型油田,因其建设周期很短,可能没有第一阶段。所述的3个开发阶段的变化特点和时间的长短,主要取决于油田的大小、埋藏深度、储层类型、地层流体性质、开发方式、驱动类型、开采工艺技术水平及开发调整的效果。一个油藏的产油量服从何种递减规律,主要是由油藏的地质条件和流体性质所决定的,开发过程中的调整一般不会改变油藏的递减规律。
递减阶段产油量随时间的变化,服从一定的规律。Arps产油量递减规律有指数递减、双曲递减及调和递减三大类。后人在Arps递减规律的基础上,对Arps递减规律进行了补充完善。中华人民共和国行业标准 《石油可采储量计算方法》 综合了所有递减规律研究成果,列出了用产油量递减曲线法计算油藏原油可采储量的4种计算方法。
1) Arps指数递减曲线公式
递减期年产油量变化公式:
Qt=Qie-D
递减期累积产油量计算公式:
油气田开发地质学
递减期可采储量计算公式:
油气田开发地质学
式中:Di——开始递减时的瞬时递减率,1/a;Qi——递减初期年产油量,104t/a;Qt——递减期某年份的产油量,104t/a;Qa——油藏的废弃产油量,104t/a。
递减期可采储量计算的步骤是:
第一步,以年产油量为纵坐标,以时间为横坐标,在半对数坐标纸上,绘制递减期的年产油量与对应的年份数据组,并进行线性回归,得到一条直线,直线方程式为:lgQt=lgQi-Dit。则直线截距为lgQi,直线斜率为-Di,从而求得初始产量Qi,递减率Di。
第二步,确定油藏的废弃产量Qa。计算技术可采储量时,一般以油藏稳产期的年产液量对应含水率98%时的年产油量为废弃产量。也可以根据开发的具体情况,根据经验,给定一个废弃产量。
第三步,由第一步所求的Qi,Di和第二步所求的Qa,代入递减期可采储量计算公式,即可求得油藏的递减期可采储量。递减期可采储量加上递减前的累积产油量就是油藏的可采储量。
2) Arps双曲递减曲线公式
递减期产油量变化公式:
油气田开发地质学
递减期累积产油量计算公式
油气田开发地质学
递减期可采储量计算公式:
油气田开发地质学
递减期可采储量计算的步骤如下:
第一步,求递减初始产油量Qi,初始递减率Di和递减指数n。产油量变化公式两边取对数得:
油气田开发地质学
给定一个,nDi值,依据上式,用油藏实际的产油量和对应年限数据组,进行线性回归。反复给定nDi值,并进行回归,直到相关性最好。此时,直线的截距为lgQi,直线斜率为-1/n。从而可求得Qi,n及Di值。
第二步,确定废弃产油量。
第三步,计算递减期可采储量。将第一步所求得的3个参数和废弃产油量代入递减期可采储量计算公式,便可求得递减期可采储量值。递减期可采储量加上递减前的累积产油量就是油藏的可采储量。
3) Arps调和递减曲线公式
Arps双曲递减指数n=1,就变成了调和递减曲线。
递减期产油量变化公式:
油气田开发地质学
递减期累积产油量计算公式:
油气田开发地质学
递减期可采储量计算公式:
油气田开发地质学
递减期可采储量计算的步骤如下:
第一步,求递减初始产油量Qi,初始递减率Di。把产油量变化公式与累积产油量计算公式组合成:
油气田开发地质学
累积产量与产量呈半对数线性关系。根据直线的截距和斜率,可求得Di,Qi值。
第二步,确定废弃产油量。
第三步,计算递减期可采储量。将第一步所求得的3个参数和废弃产油量代入递减期可采储量计算公式,便可求得递减期可采储量值。递减期可采储量加上递减前的累积产油量就是油藏的可采储量。
4) 变形的柯佩托夫衰减曲线Ⅱ
递减期产油量变化公式:
油气田开发地质学
递减期累积产油量计算公式:
油气田开发地质学
递减期可采储量计算公式:
油气田开发地质学
计算可采储量之前,首先要求得参数a,b,c。求参数常用且简便的方法如下:
首先,求得参数a和c。由递减期产油量变化公式和递减期累积产油量计算公式可得:
tQt+Np=a-cQt
根据上式,以tQt+Np为纵坐标,Qt为横坐标,进行线性回归,直线截距为a,斜率为-c。从而求得参数a和c。
然后,求参数b。将所求参数a和c代入累积产油量计算公式,以累积产油量Np为纵坐标,以1/(c+t)为横坐标,进行线性回归,则直线截距即为a,直线斜率即为要求的参数b。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。