天然气动态建模过程描述正确的是哪一项阶段_天然气仿真模拟
1.低孔低渗砂岩储层裂缝预测及双孔双渗地质建模研究——以大北气田为例
2.非常规油气评价方法
3.基于二维地质建模的两种地震数值模拟方法的应用及分析
4.“石油与天然气工程”下属的二级学科就业都如何?(硕士)
5.Jason反演技术在天然气水合物速度分析中的应用
6.高分介绍研究生地质工程专业
人们早早就学会了利用太阳,但主要都是在晒干一些食物、衣物等。现今 社会 人们则利用太阳对地表的辐射,架设光伏板来将阳光转化成直流电,经过线路只输到千家万户供我们使用。太阳能在生活中的应用非常广泛,如:太阳能热水器,太阳能电池、太阳能发电等。
你不得不相信的是,数千年前,我们的祖先就会使用风能,当时帆船作为最古老且最实用的交通工具,而帆船的使用最离不开的就是风力的驱动。风是因太阳对地球表面各部分的辐射不均,导致大气压力不同而产生的。现今 社会 通过特定地理位置的季风研究,将将风力发电机组建设在风力较为充足的地域上,来利用风能发电。
核能也被称为原子能,是通过核反应对原子核释放出的巨大能量,具体分为核裂变、核聚变、核衰变等三种方式,铀是目前核能最主要的燃料,1000克铀提供的能量与燃烧两千五百吨优质煤旗鼓相当,正确的使用核能对于保护我们的生态可以起到很好的作用。
水能的主要原理是利用江河、湖泊等水较为丰富的场所与其他地势落差不同,使大量的水具有势能,从高处像低处流过的水,推动水轮机使其转动,令水轮机带动发电机进行发电,水能通过一系列的能量转换,从势能到机械能再到电能,为我们所用。
除了上述四种能源,还有海洋能、潮汐能、生物质能、氢能、铀能、等各类新能源。
这些新能源的使用减轻了我们对石油、煤炭的依赖。可再生与重复利用等优点也推动了新能源的广泛应用。未来生活里,新能源将伴随我们继续实现可持续性发展,对于倡导环保绿色,新能源拥有不可忽视的功劳。
常规能源又称为“传统能源”,是指已经大规模生产和广泛利用的能源,比如煤炭、石油和天然气等能源,人类进入工业革命以来,随着蒸汽机和内燃机的广泛使用,已经能够熟练并大规模的使用,那么他们就是常规能源。但是,如果我们把时间倒退到500年前,那时候全世界还处在农业文明时期,人类主要利用的能源是木柴,那么,那个时候煤炭、石油和天然气都属于新能源,甚至石油和天然气人类基本上都没怎么利用。
因此,常规能源和新能源并不是一成不变的,而是可以出现转化,随着人类技术的进步,人类对于新能源的利用会趋向成熟,那么这种能源也就转化为常规能源了。那么,目前哪些能源属于新能源呢?目前,主要的新能源包括太阳能、风能、潮汐能、波浪能、洋流能、地热能、氢能源和核能等等。在上述新能源中太阳能是直接来自于太阳辐射的能量,而风能和洋流能的产生,也主要是由于太阳辐射能在地球表面分布的不均而引起的大气和海水运动。
此外,潮汐能来自于天体之间的引潮力,主要是月球和太阳对地球的引潮力而产生的能量。地热能、核能和氢能都来自于我们地球本身,地热能是由于地球内部的放射性元素发生衰变而聚集的热能。目前人类建设的核电站,主要都是利用“核裂变”反应而获得的热能,而更为高效的类似太阳内部的“核聚变”反应装置,我们还处在实验室研究阶段。氢能是十分清洁而环保的能源,而且氢元素在自然界中又广泛存在,不过目前对于氢能的利用也还处于研发阶段,未大规模利用。你觉得上述新能源中,哪一个最有发展前途呢?
光能、风能、电能
那得看你以什么眼界去定义它了!当下流行的西方论点就不提了。我就以中华古典西游记中的_三段九级,人与 科技 之路给你描述一下。人_鬼_神三态九级使用的能源 科技 体系,人态,广泛谕指凡人 科技 的农耕畜牧驯养的人与动物为能源动力 科技 体系发展起来的一个时代特征;鬼态,妖魔鬼怪式有源有燃料 科技 体系为主时代特征。我们当下就处于五花八门_乌烟瘴气_妖魔鬼怪式的_有源有燃料外置能源 科技 形态的末端;神态,既下一个洁净、持久、安全、祥瑞的_无源无燃料能源 科技 时代特征,当下的人与 科技 还没入门呢!这个能源 科技 体系的机制原理就在我们每个人的身体里,它就是有之的_血液能量自闭循环转换系统,人与 科技 什么时候能够从我们身体当中分离出来,并形成一件_完美的能源 科技 工质建模出来。能源动力问题才能构建起人与 科技 体系发展进步的一个_忽略不计!人鬼神三段九级的能源 科技 中的_新能源。你指的是哪一个?在中华古典西游记中都能查到。
新能源:是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、风能、地热能、波浪能、洋流能和潮汐能,以及海洋表面与深层之间的热循环等;此外,还有氢能、沼气、酒精、甲醇等,而已经广泛利用的煤炭、石油、天然气、水能 等能源,称为常规能源。随着常规能源的有限性以及环境问题的日益突出,以环保和可再生为特质的新能源越来越得到各国的重视。
在中国可以形成产业的新能源主要包括水、风能、生物质能、太阳能、地热能等,是可循环利用的清洁能源。新能源产业的发展既是整个能源供应系统的有效补充手段,也是环境治理和生态保护的重要措施,是满足人类 社会 可持续发展需要的最终能源选择。我国已有人造太阳
我知道的新能源有
太阳能发电,太阳能烧水。
风能发电
潮汐发电
地热能发电
核能发电
生物质能发电
新能源( NE):又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。
中文名
新能源
外文名
New Energy
别名
非常规能源
分类
太阳能、地热能、风能、海洋能等
特点
环保、可供永续利用
定义
1980年(庚申年)联合国召开的“联合国新能源和可再生能源会议”对新能源的定义为:以新技术和新材料为基础,使传统的可再生能源得到现代化的开发和利用,用取之不尽、周而复始的可再生能源取代有限、对环境有污染的化石能源,重点开发太阳能、风能、生物质能、潮汐能、地热能、氢能和核能(原子能)
新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、风能、地热能、波浪能、洋流能和潮汐能,以及海洋表面与深层之间的热循环等;此外,还有氢能、沼气、酒精、甲醇等,而已经广泛利用的煤炭、石油、天然气、水能 等能源,称为常规能源。随着常规能源的有限性以及环境问题的日益突出,以环保和可再生为特质的新能源越来越得到各国的重视。
在中国可以形成产业的新能源主要包括水能(主要指小型水电站)、风能、生物质能、太阳能、地热能等,是可循环利用的清洁能源。新能源产业的发展既是整个能源供应系统的有效补充手段,也是环境治理和生态保护的重要措施,是满足人类 社会 可持续发展需要的最终能源选择。
一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源化利用的物质而受到深入的研究和开发利用,因此,废弃物的化利用也可看作是新能源技术的一种形式。
新近才被人类开发利用、有待于进一步研究发展的能量称为新能源,相对于常规能源而言,在不同的 历史 时期和 科技 水平情况下,新能源有不同的内容。当今 社会 ,新能源通常指太阳能、风能、地热能、氢能等。
按类别可分为:太阳能、风能
、生物质能、氢能、地热能、海洋能、小水电、化工能(如醚基燃料)、核能等。
对于国家以后的新能源当时说不上,可能以后会更多的,至是我们到如今还没有发觉出来,我估计有更多的宝贝很有可能在地底下
钍基熔岩堆,我国钍的储量比较大,比铀的储量大,可以用于开发新能源。毕竟我国原油储量不够,主要靠进口,以前还只能用美元结算,美帝就疯狂印钱收割世界上的财富
现在好多 汽车 都是新能源的,有用电能有利用燃气的,最近几年我们国家在开发可燃冰。
低孔低渗砂岩储层裂缝预测及双孔双渗地质建模研究——以大北气田为例
1 计算机视觉。
计算机视觉是指计算机能从图像中识别出物体、场景和活动的能力。
它有着广泛的应用,包括了医疗的成像分析,用作疾病预测、诊断和治疗;人脸识别;安防和监控领域用来识别嫌疑人;在购物方面,消费者可以用智能手机拍摄产品以获得更多的购物选择。
2 机器学习。
机器学习是指计算机系统无须遵照显示的程序指令,而是依靠数据来提升自身性能的能力。
它的应用也很广泛,主要针对产生庞大数据的活动,比如销售预测,库存管理,石油和天然气勘探,以及公告卫生等。
3 自然语言处理。
它是指计算机能够像人类一样拥有文本的处理能力。
举例来说,就是在许多封电子邮件中,以机器学习为驱动的分类方法,来判别一封邮件是否属于垃圾邮件。
4 机器人
将机器视觉、自动规划等认知技术整合至极小却高性能的传感器、制动器以及设计巧妙的硬件中,这就形成了机器人,它有能力跟人类一起工作。
例如无人机,以及在车间为人类分担工作的“cobots”等。
5 语音识别
语音识别主要是关注自动且准确地转录人类的语音技术。
语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。最近推出了一个允许用户通过语音下单的移动APP。
非常规油气评价方法
肖香姣1,2 姜汉桥1 王海应2 魏 聪2 赵力彬2 程 华2
(1.中国石油大学(北京)石油工程教育部重点实验室,北京市昌平区 102249; 2.中国石油塔里木油田分公司,新疆库尔勒 841000)
作者简介:肖香姣,女,高级工程师,主要从事高压气藏、凝析气藏开发研究。E-mail:xiaoxitlm@petrochina.cn。
摘 要:裂缝发育程度决定着低孔低渗储层的渗流和产出能力,但由于裂缝发育机制的复杂性,故裂缝 的描述及预测一直是裂缝性油气藏开发中的重点和难点。目前,裂缝的预测方法很多,但在实际应用中都存 在其局限性。构造应力场分析法既严格考虑了裂缝的成因机制,又能较好地与油气生产实际和应用相结合,是裂缝定量预测的一种有效方法。本文针对大北气田储层构造裂缝发育的实际情况,以单井裂缝描述及分布 特征研究为基础,从构造应力场数值模拟出发,通过模型转换建立了与储层地质模型网格完全对应的有限元 分析模型。然后,结合区域古构造活动与岩石力学实验的研究成果,通过连续介质三维有限元数值模拟对储 层构造应力场进行了预测与分析。通过优选岩石破裂准则和建立应力场数据与裂缝参数的计算模型,对大北 气田的储层裂缝进行了定量预测。在此基础之上,利用构造应力场分析法的裂缝预测结果作为约束条件,通 过随机模拟方法建立了符合该气田气藏地质特征的双孔双渗三维精细地质模型,为该类气田的开发方案设计 等研究提供了依据。
关键词:低孔低渗;裂缝预测;构造应力场;双孔双渗;地质建模
Research on Fracture Prediction and Dual-permeability Geological Modeling of Low Porosity and Low Permeability Sandstone Reservoirs—Taking Dabei Gasfield as An Example
Xiao Xiangjiao1,2,Jiang Hanqiao1,Wang Haiying2,Wei Cong2,Zhao Libin2,Cheng Hua2
(1.Key laboratory of Petroleum Engineering,Ministry of Education,China University of Petroleum,Changping,Beijing,102249;2.Tarim Oilfield Company,PetroChina,Kora,Xinjiang,841000)
Abstract:The degree of fracture development determine the ability of fluid seepage and production in low porosity and low permeabilty formation.Because of the complexities on the formation mechanism of fracture,the fracture reservoir are the keystone and difficulty of development.At present,there are many methods for fracture prediction,which also he many limitations in lication.The method of fracture prediction by analysing tectonic stress field,in which the formation mechanisms of fracture is considered strictly,as well as the production practice of the oil-gas field and practical lication is well combined,is a effective way to forecast fracture quantitatively in the reservoir.According to the reality that the fractures are well developed in the reservoir rocks of Dabei Gasfield,a finite element method analysis model consistent with the geologic model grid of the reservoir is built by model conversion methods,starting from the numerical simulation of tectonic stress field,based on the single well fracture description and the study on fracture distribution characteristic.And then,the reservior tectonic stress field is forecasted and analysed by 3D finite element numerical simulation for continuum model,combined with the research results of territorial paleostructure and rock mechanics experiment.According to the classical rock-craking principle and the calculation model between the tectonic stress field data and fracture parameters,the quantitative prediction of structural fracture in reservoir rocks of Dabei Gasfield is conducted.On this base,a fine 3D dual-permeability geologic model suitable for the geologic features of this gas field is built through stochastic modeling controlled by the results of fracture prediction with the methods of tectonic stress field analysis,and they provide reference for the study on gasfield development design of this kind of gas field.
Key words:low porosity and low permeability;fracture prediction;tectonic stress field;dual-permeability; geological modeling
裂缝型储层油气藏在我国占相当突出的比例,其产量占整个油气产量的一半以上,在我国油气生产 中起着举足轻重的作用。因此,进行裂缝特征和分布规律预测研究,对增加储量的动用程度、改善开发 效果、提高我国裂缝型油气藏勘探开发的整体水平均具有重要的现实及长远的战略意义。
低孔低渗储层中裂缝的发育不仅为油气的储集提供空间,而且有助于连通不同类型的储集孔隙,是 控制油气富集和产能的主要因素。在含油气盆地勘探过程中,随着勘探深度不断深入,低渗透裂缝性油 气藏的比例也会随之增加。如何有效地描述和预测裂缝分布,建立合理的双孔双渗地质模型,对提高我 国裂缝型油气田勘探开发水平具有重要的意义。本文以大北气田为例,在单井裂缝描述的基础上,开展 了低孔低渗砂岩储层裂缝预测及双孔双渗地质建模研究,为该气田开发方案的设计等研究提供了 依据[1]。
1 研究区概况
大北气田位于新疆维吾尔自治区阿克苏地区拜城县,东距拜城县县城28km,南距拜城-阿克苏公 路16km,南部与大宛齐油田相距7km。该气田位于克拉苏构造带的大北-吐北段,东邻克拉1-克拉2 段的克拉-克深区块,西为博孜段,由北至南横跨克深区带、克深南区带、拜城北区带。东西长约 60km,南北宽25~35km,面积约1500km2,呈向南凸起的微弧形背斜构造(图1)。
图1 大北气田地理位置及井区构造位置图
大北气田储层为白垩系巴什基奇克组辫状河三角洲和扇三角洲砂岩,埋深大,基质孔隙度<6%、 渗透率<0.1×10-3μm2,属特低孔低渗储层。在勘探评价阶段,仅有11口探井和评价井,井距2~ 5km,地震资料品质较差,储层裂缝发育。
2 单井裂缝描述及分布特征[2]
2.1 裂缝产状
大北气田产层巴什基奇克组为低孔低渗砂岩储层,裂缝发育。岩心观察统计结果表明,大北气田裂 缝以高角度斜交缝和垂直裂缝为主,其中大北1井高角度斜交缝约占60%,低角度斜交缝和垂直缝其 次;大北101井、大北102井和大北202井主要以高角度斜交缝和垂直缝为主,占全部裂缝的75%左 右;大北104井约70%的裂缝为垂直缝,25%为高角度斜交缝。
成像测井解释结果表明,大北气田巴什基奇克组主要发育NW-SE走向和EW走向的有效裂缝,其次为NE-SW走向裂缝,从西向东裂缝走向具有逐渐从NE-SW向近EW向偏移的趋势。基于成像 测井资料识别出的高导缝其倾角多分布在50°~90℃范围内,其峰值为60°~80°,即裂缝以高角度斜交 缝为主,垂直缝次之,低角度斜交缝和水平缝不发育,与岩心识别裂缝结果一致。
2.2 裂缝发育规模
按发育规模可将大北气田裂缝分为宏观裂缝和微观裂缝。岩心宏观裂缝约占20%,大北202井裂 缝开度最大,平均值为1.16mm。大北102井和大北1井次之,平均值为0.63mm。大北101井和大北 104井裂缝开度最小,平均值为0.53mm。微观裂缝约占80%。整体上看,大北1井和大北2井微观裂 缝开度较大,平均值分别为0.1761mm和0.1736mm;大北101井和大北102井微观裂缝开度较小,平 均值分别为0.0514mm和0.0591mm。各井微观裂缝开度相对大小关系与宏观裂缝基本一致。
大北气田巴什基奇克组6口取心井中,观测岩心长度共45.91m,裂缝共232条,平均裂缝线密度 为5.05条/m,平均面密度为6.8m/m2。利用7口井的成像测井资料在巴什基奇克组共识别出5条天 然开启裂缝,井段总长度共1228.3m,平均裂缝线密度为0.49条/m。总体来看,岩心识别的裂缝线密 度远大于成像测井(前者的分辨率高于后者)。大北104井取心段裂缝最为发育,平均裂缝线密度高达 16.7条/m,大北202井次之,平均裂缝线密度为8.91条/m,大北1井、大北101井和大北102井裂缝 密度较低。成像测井解释结果表明,大北103井裂缝最为发育,裂缝线密度为1.06条/m,其次是大北 101井、大北202井、大北201井、大北104井、大北3井,裂缝线密度范围为0.2~0.8条/m,大北 102井中裂缝不发育,裂缝线密度小于0.1条/m。
3 储层裂缝分布预测
3.1 裂缝成因及期次
通过野外露头调查、岩心观察和测井解释资料,确定大北气田储层裂缝以构造缝为主[3]。结合薄 片,裂缝包裹体、热史-埋藏史研究结果,通过对裂缝产状、充填特征和交切关系进行分析,可以推断 大北气田大致发育4期构造裂缝。第1期是同沉积(同生-准同生)裂缝;第2期为高角度裂缝;第3 期为具有 “二元” 或“三元” 充填结构的高角度(或网状)裂缝;第4期为与第2期裂缝走向近于正 交的高角度开启裂缝。其中,第3期和第4期为有效裂缝。第4期裂缝是最重要的有效裂缝,形成于喜 山运动中晚期构造挤压,是裂缝定量预测的对象[4,5]。
3.2 应力场预测裂缝思路[6~10]
利用研究区已有的地质、地震、测井、钻井等资料,建立研究区的有限元分析模型,并确定相应的 边界条件、反演标准;结合对研究区构造应力场演化的研究及岩石力学三轴实验结果,确定模型的力学 性质、加载方式、约束条件及岩石力学参数;利用有限元力学分析软件Ansys对储层构造应力场的大小 分布进行数值模拟计算。在此基础上,根据岩石破裂准则,开展裂缝分布定量预测研究。
3.3 预测模型的建立
目前,三维有限元结构模型大多数是根据研究区储层的构造顶底面数据,通过网格自动剖分来 建立。由于该法所建模型与地质构造模型中的网格非一一对应,不利于数据的前后处理,计算结果 不能直接用于储层裂缝建模。为此,通过解剖Ansys有限元分析软件[11]和Petrel地质建模软件的网 格组成系统,编制了相应的模型转换程序,实现了大北气田储层地质构造模型向三维有限元结构模 型的精确转换,如图2、图3所示。综合岩石力学实验和测井解释结果[12,13],确定构造应力场数值模 拟所用的力学参数。在此基础之上,对有限元力学模型进行约束和加载,便可得到储层构造应力场的分 布规律。
图2 地质构造模型—有限元结构模型节点转化示意图
图3 大北气田101断块储层地质构造模型和有限元结构模型
3.4 预测结果
根据模拟结果,结合经典破裂准则[14],建立应力应变与裂缝孔隙度渗透率之间的定量关系,实现 裂缝形成初期的定量预测[15~18]。结果显示,大北101断块裂缝集中分布在南部边界断层附近的构造高 点上(图4和图5)。
现今应力场下虽然不会形成新的裂缝,但是对早期存在的裂缝会有改造和演化变迁作用[21]。因 此,需要对古地应力场下形成的裂缝孔隙度和渗透率进行修正。最后,根据岩心观察统计和测井资料解 释结果,对各层各井的裂缝各项参数的计算结果进行验证,如有矛盾,需检查修改应力场模拟的边界条 件或应力-裂缝参数定量关系,直至裂缝预测结果与实际统计结果吻合。
图4 大北101古裂缝孔隙度分布图
图5 大北101古裂缝东西向渗透率分布图
4 双孔双渗地质建模
4.1 建模技术流程
通过三维地震解释、野外露头和单井岩心、薄片、测井资料等综合分析大北地区的构造、沉积和储 层发育特征,利用Petrel软件建立储层三维构造模型和沉积相模型。在此基础之上,结合地质认识,通 过随机模拟方法建立储层的属性(基质和裂缝)模型[20,21]。由于地震资料品质较差,储层基质模型主 要考虑了露头、岩心和测井等资料,然后利用沉积相控随机模拟方法实现。储层裂缝模型,主要是将构 造裂缝的预测结果(Ansys),通过模型转换导入地质模型作为裂缝约束模型(Petrel),再利用随机模 拟方法实现。
4.2 储层属性建模
4.2.1 基质属性建模
储层物性的空间分布在很大程度上受控于沉积相的空间分布。因此,在沉积相分析的基础上,根据 野外露头、岩心和测井资料,统计分析不同相类型的储层物性参数特征和分布规律,最后分相进行随机 模拟,建立各相储层基质属性参数分布模型[22]。根据以上原则,用序贯高斯方法模拟基质孔隙度分 布。在对渗透率进行模拟时,首先对其进行对数转换,使其接近正态分布,然后以孔隙度作为约束, 用序贯高斯方法进行模拟。图6为建立的基质孔隙度和渗透率模型。
图6 大北气田储层基质属性参数模型
4.2.2 裂缝属性建模
裂缝属性参数建模主要以大北7口成像测井拾取的裂缝孔隙度、渗透率参数为基础,结合露头区裂 缝的发育特征,利用储层有限元构造裂缝的预测结果作为平面约束,用序贯高斯方法对裂缝孔隙度、 渗透率进行模拟。图7为建立的裂缝孔隙度和渗透率模型。
图7 大北气田储层裂缝属性参数模型
4.3 模型可靠性评价
4.3.1 储量检验
根据有效储层下限标准,取孔隙度大于3.5%,渗透率大于0.055×10-3μm2的网格为有效网格,并参与储量计算,用容积法分断块计算模型储量。断块储量互有增减,但差别均不大,整体误差小 于1%。
4.3.2 属性参数检验
对模拟结果进行统计分析,对比输入参数的分布特征,分析模型是否能较好地反映原始输入参数的分 布特征。将基质和裂缝属性参数的模拟结果与原始数据分布直方图进行对比,发现孔隙度和渗透率的分 布形态与输入数据基本一致,模型可行度高,符合气藏的地质特征,已应用到大北气藏试方案研究。
5 结论
(1)由于低孔低渗致密性储集层以构造裂缝为主,用地质力学原理和方法,通过应力场数值模 拟来定量表征裂缝具有较好的应用前景。
(2)通过应力场模拟与储层地质建模网格单元的对应性研究,实现了不同软件间的模型转换,使 得有限元构造裂缝的预测结果可直接应用到地质建模中,实现了基质网格和裂缝网格的无缝对接。
(3)综合岩心、成像测井和有限元构造裂缝的预测成果,建立了大北气田稀井网条件下符合地质 特点的双孔双渗地质建模,为开发方案设计打下了很好的基础。
参考文献
[1]刘卫丽,王秀娟,程洪亮,等.三维裂缝预测与渗透率建模研究[J].世界地质,2008,27(3):270~274.
[2]汪功怀,杨希翡,王乐之,等.户部寨构造低渗致密砂岩气藏裂缝描述与预测研究[J].江汉石油学院学报,2003,25(3):117~120.
[3]张明利,谭成轩,汤良杰,等.塔里木盆地库车坳陷中新生代构造应力场分析[J].地球学报,2004,25(6): 615~619.
[4]曾联波,漆家福,王永秀.低渗透储层构造裂缝的成因类型及其形成地质条件[J].石油学报,2007,28(4): 52~56
[5]刘洪涛,曾联波.喜马拉雅运动在塔里木盆地库车坳陷的表现[J].地质通报,2004,23(7):13~15.
[6]Xinmin Song,et al.Integrated Characterization of Natural Fractures.Paper 64776 Presented at the 2000 SPE Annual Technical Conference and Exhibition.2000,9:3~6
[7]周新桂,邓宏文,操成杰,等.储层构造裂缝定量预测研究及评价方法[J].地球学报,2003,24(2):175~180.
[8]李淑恩,张绍辉,岳奎,等.构造应力场数值模拟分析技术及其应用.油气地质与收率,2001,8(6):38~40.
[9]唐湘蓉,李晶.构造应力场有限元数值模拟在裂缝预测中的应用[J].特种油气藏,2005,12(2):25~28.
[10]沈国华.有限元数值模拟方法在构造裂缝预测中的应用[J].油气地质与收率,2008,15(4):24~26.
[11]ANSYS Theory Manual[G].ANSYS Help System,Release 10.0.2005.
[12]丁原辰.声发射法古应力测量问题讨论.地质力学学报,2000,6(2):45~52.
[13]丁原辰,邵兆刚.测定岩石经历的最高古应力状态试验研究.地球科学,2001,26(1):99~104.
[14]戴俊生,汪必峰,马占荣.脆性低渗透砂岩破裂准则研究[J].新疆石油地质,2007,28(4):393~395.
[15]邓攀,魏国齐,杨泳.储层构造裂缝定量预测中地质数学模型的建立与应用研究[J].天然气地球科学,2006,17(4):480~481.
[16]王瑞飞,陈明强,孙卫.特低渗透砂岩储层微裂缝特征及微裂缝参数的定量研究[J].矿物学报,2008,28(2): 215~220.
[17]季宗镇,戴俊生,汪必峰,等.构造裂缝多参数定量计算模型[J].中国石油大学学报(自然科学版),2010,34(1):24~28.
[18]季宗镇,戴俊生,汪必峰.地应力与构造裂缝参数间的定量关系[J].石油学报,2010,30(1):68~72.
[19]黄继新,彭仕宓,王小军,等.成像测井资料在裂缝和地应力研究中的应用[J].石油学报,2006,27(6):65~ 69.
[20]陈烨,蔡冬梅,范子菲,等.哈萨克斯坦盐下油藏双重介质三维地质建模[J].石油勘探与开发,2008,35(4): 492~498.
[21]霍春亮,古莉,赵春明,等.基于地震、测井和地质综合一体化的储层精细建模[J].石油学报,2007,28(6): 66~71.
[22]于兴河,陈建阳,张志杰,等.油气储层相控随机建模技术的约束方法[J].地学前缘,2005,12(3): 237~244
基于二维地质建模的两种地震数值模拟方法的应用及分析
随着非常规油气勘探开发技术的快速发展,非常规油气评价方法研究越来越受到重视。目前,国内、外非常规油气评价方法比较多(表2-8),分类也比较混乱。国内的评价方法超过10种,其中致密砂岩气评价方法就多达9种(郭秋麟等,2009;董大忠等,2009)。美国USGS为了便于评价,将油气分为常规和非常规油气两大部分,其中非常规(致密砂岩气、页岩气、煤层气和天然气水合物等)被称为连续型油气,非常规评价方法与连续型油气评价方法基本相同(Schmoker,2002;Olea et al.,2010)。国外最常用的方法是类比法、单井储量估算法、体积法、发现过程法和空间分布预测法等。
以上方法可归纳为类比法、统计法和成因法三大类。类比法:国内常用的类比法是单位面积丰度类比法,这种方法与常规油气评价的类比法相似;国外主要USGS的FORSPAN法及其相应的改进方法。统计法:主要有体积法、“甜点”规模序列模型法、“甜点”发现过程法、单井储量估算法和油气空间分布预测法等,这些方法与常规油气评价法相似。成因法:国内用得较多,主要有盆地模拟法和热解模拟法。下面分别介绍这些方法中有代表性、较特殊的几种方法。
表2-8 国内、外非常规油气评价方法
一、类比法
类比法是USGS的主流评价方法。该方法最早由咨询公司评价员JohnGrace开发(NOGA Assessment Team,1995)。1995年,USGS的Schmoker接管了该方法后对其进行了扩展和改进,在2000年至2002年期间做了大量的应用(Schmoker,2002)。最近几年,Klett等(2003)继承和发展了该方法,特别是在数据库、参数分布、图表输出标准等方面的发展显著,现该方法已达到较为完善的程度。
1.评价单元与最小评价单位
USGS将目标评价层次划分为大区(region)、地质区(geologic province)、总含油气系统(TPS)、评价单元(AU)和最小评价单位(cell)。大区为组织单元,地质区是指具有共同地质属性的空间实体,总含油气系统是指具有共同的生、储、盖、运、圈、保等地质特征的可绘图的实体,评价单元是总含油气系统的一部分,由许多cell组成。在早期的评价网格中cell是指一个矩形网格,在目前的评价网格中cell是指由一口井所控制的排泄区(well drainage area)。
2.主要评价参数
主要评价参数包括:
(1)评价单元总面积(U);
(2)未测试单元总面积占评价单元总面积的百分比(R);
(3)未测试单元面积中具有增加储量潜力的百分比(S);
(4)每个有潜力的未测试cell的面积(Vi);
(5)每个cell的总可储量(Xi);
(6)未测试单元平均产油气比率;
(7)天然气评价单元液/气比率。
以上主要评价参数用于直接计算量。在参数前处理过程中,已有的钻井资料主要用于储层参数(如厚度、含水饱和度、孔隙度、渗透率等)的分布研究、权重系数的确定、最终储量和收率的估算。在缺乏足够的钻井和生产数据的地区,评价参数主要通过类比获得。
3.评价流程
该方法适合于已开发地区的剩余潜力预测。通过模拟每一个cell的参数分布,用相应的参数分布计算cell的量,并汇总为整个评价单元的剩余总量(图2-9)。结果用概率形式表示。评价过程主要有以下4步:
图2-9 连续型油气聚集评价流程
第一步:确定有潜力的未测试单元比例(T),即:
非常规油气地质学
第二步:计算有潜力的未测试单元面积(W),即:
非常规油气地质学
第三步:确定有潜力的未测试cell的个数(N),即:
非常规油气地质学
第四步:计算评价单元总量(Y),即:
非常规油气地质学
公式中的符号说明见上文“主要评价参数”部分,求解方法均用随机模拟法。
二、随机模拟法
随机模拟法是USGS新推出的方法。2010年12月,Olea等认为传统的类比法存在3点不足:第一,忽略了不同评价单元EUR的空间关系;第二,没有充分挖掘已有数据所隐含的信息;第三,评价结果违背空间分布规律。
针对以上不足,USGS提出了一种新的方法———随机模拟法。该方法与类比法的不同之处有以下几方面:第一,算法的发展,由原来的类比法发展为以统计法为主、类比法为辅的综合评价法,在有井区用序贯高斯算法的随机模拟法;在无井区用类比法,通过类比得到EUR的空间关系及相关参数,然后进行多点模拟。第二,地质建模的发展,在此之前用三角分布来确定参数;现在通过分析空间数据间的关系,用地质统计学方法建立参数空间分布模型。第三,模拟单元用最早的网格单元cell,它与原来的cell有很大的不同,新cell的面积很小,接近于单井控制的排泄区或更小。
新方法根据钻井情况确定两套评价过程,即A过程———在已有钻井地区的评价步骤和B过程———在无钻井地区的评价步骤。
1.A过程———已有钻井地区评价步骤
A过程属统计法,共有11步:第一,选择单元格尺寸和形状等基本评价单位;第二,指定已知井排泄区;第三,建立每口井排泄区的形状和位置模型,每个井排泄区相当于多个相邻单元格的集合体;第四,为每个无产能井限定无产能区范围;第五,通过确定单元格、排泄区、井的关系,为每个网格单元准备一个相应的EUR(最终可储量)数据集;第六,为每个测试单元准备一个包含3条信息的指示数据集,即单元格中心的纵、横坐标和一个指示器,指示器为0表示单元格没有产能,为1表示有产能;第七,如果该区域没有数据或者很少数据,不确定性很大,则需要准备一张克里金估计误差图,并由此确定评价区的边界;第八,用序贯指示随机模拟方法至少模拟100次产能指示器,指明单元格有无产能;第九,用序贯高斯随机模拟方法模拟单元格EUR,模拟次数与指示器的模拟次数相同;第十,利用第八步中生成的图件修正第九步中生成的图件,以上每次模拟结果的发生都是等概率的;第十一,用等概率模型,汇总以上模拟的结果。
2.B过程———无钻井地区评价步骤
B过程属类比法,共有9步:第一,选择地质条件相似的成熟区作为类比刻度区,用A过程模拟,根据模拟图像和经验确定边缘区(评价区)的EUR波动特征;第二,确定评价区边界;第三,变换EUR值的概率分布和训练图像到标准刻度,使其服从均值为0,方差为1的正态分布;第四,利用连续滤波模拟,生成单元格产能的至少100次实现;第五,把实现从正态分布空间反变换到原来的EUR空间;第六,有规律地抽取1%的单元样本,生成一个产能指示数据集。定义数值在d%以下的那些单元为没有产能,以上的单元格有产能,这里d是在类比刻度区中无产能井的比例;第七,运用正态分布对有产能和无产能单元进行条件模拟,生成与第四步相同数量的实现;第八,利用第七步中的实现来修正第五步,得到评价区模拟的最终实现;第九,应用至少100张单元格EUR值等概率图,准备评价,汇总评价结果。
三、单井储量估算法
单井储量估算法是一种典型的统计法,由美国Advanced Resources Informational(ARI)提出,核心是以1口井控制的范围为最小估算单元,把评价区划分成若干最小估算单元,通过对每个最小估算单元的储量计算,得到整个评价区的量数据,即
非常规油气地质学
式中:G为评价区量;qi为单井储量;i为评价区内第i个估算单元;n为评价区内估算单元数;f为钻探成功率。
此方法包括5个关键步骤,即确定评价范围、确定最小估算单元、确定单井储量规模、确定钻探成功率和确定气藏“甜点”。
四、油气空间分布预测法
油气空间分布预测法为特殊统计法,有3种不同的评价方法:一是基于成藏机理和空间数据分析的方法;二是基于地质模型的随机模拟方法(Chen et al.,2006);三是支持向量机的数据分析法(Liu et al.,2010)。以上3种评价方法除了数理统计分析不同外,其思路和评价过程基本相似,仅介绍第一种方法。
1.二维分形模型
由于地质过程的复杂性,无法将油气空间分布以某一精确解析式的形式来描述。已知油气藏本身并不包含未发现油气藏的直接信息,因此用常规地质统计学的随机模拟方法,直接从已知油气藏中提取空间统计信息,预测油气空间分布,其结果往往不尽如人意。但是,如果把已知油气分布和地质变量在空间的相关特征作为随机模拟的限制条件,用统计方法将这种相关特征以概率密度函数近似表达出来,就可提高预测的准确性。
油气空间分布的二维分形模型基于随机模拟技术和傅立叶变换功率谱方法建立,即通过傅立叶变换,把具有分形特征的油气藏分布空间(空间域)转化到傅立叶空间(频率域)中,用功率谱方式来表述油气的空间相关特征。根据分形理论,分形模型研究对象的空间相关特征可由功率谱函数来表达。对于具有分形特征的时间序列,其功率谱函数可表达为时间序列频率的幂函数
非常规油气地质学
式中:f为频率;S为功率谱密度;β为幂因子,称为频谱指数。上式表述的这种随机过程相当于Hurst空间维数H=(β-1)/2的一维分数布朗运动(fBm)。选择不同的β值,即可产生不同分形维数的fBm。对于二维图像或序列,其功率谱S有x和y两个方向的频率变量(u和v)及对应的频谱指数(βx和βy)。对统计特性来说,xy平面上的所有方向都是等价的,当沿着xy平面上的任一方向切割功率谱S时,可用
非常规油气地质学
代替频率f。因此,由式(2-6)可推出各向同性的二维对象随机过程的表达式:非常规油气地质学
而对于各向异性的对象,可定义H为方位角θ的函数,则其二维分形模型的表达式可写成:
非常规油气地质学
式中:βx和βy分别代表功率谱中x方向和y方向的频谱指数。通过这个表达式就能模拟出油气藏分布空间的新功率谱。
2.修正丰度
二维分形模型中的指数函数H(θ)可以通过实际数据拟合βx和βy后获得。功率谱能量(丰度)越高的油藏,出现的频率越低,反之亦然。这一特点与油气勘探结果相吻合。因此,如果以能量较高的若干数据点为基础进行拟合,结果基本能代表该方向上油气的分布趋势(分形直线)。拟合的直线斜率(绝对值)即为该方向上的频谱指数。分别确定x方向和y方向上的频谱指数βx和βy后,代入二维分形模型中,就能模拟出新的功率谱S。新功率谱已修正了原始功率谱的不足,它包含了所有油气藏(已发现和未发现油藏)丰度的信息。
3.丰度空间分布模拟
确定油气藏在空间的分布位置是油气勘探的首要任务。目前,有许多方法可以预测油气勘探风险,绘制勘探风险图。勘探风险图包含了油气藏可能出现位置等方面的信息。为了把这一信息和丰度信息综合起来,需要做如下信息处理:①空间域转化为频率域。同样,用傅立叶空间变换,把勘探风险图从空间域转化到频率域。这时,除了得到以上提到的功率谱外,还能得到相位谱Ф,相位谱中包含着油气藏位置信息。②从频率域回到空间域。用傅立叶逆变换,把新的丰度功率谱S和勘探风险图的相位谱Ф结合起来,形成新的图。该图就是空间域中的油气分布图,它不仅提供了油气藏的位置,也指出了丰度。
在具体实现中,还需要在一些细节上做技术改进,包括设置经济界限,排除丰度低的没有经济价值的油气藏以及用已钻井数据验证和修正等。
五、连续型致密砂岩气预测方法
这是一种特殊成因法。对于常规储层及常规圈闭气藏,天然气的运移主体服从置换式运移原理,即在天然气向上运移的同时,地层水不断向下运移,形成了气水之间的置换式排驱和运移特点,其驱动力来自于浮力。对于致密砂岩气藏来说,致密储层与气源岩大面积接触,天然气的运移方式表现为气水之间发生的广泛排驱作用和气水界面的整体推进作用,其过程类似活塞式排驱,其运移动力来源于烃源岩的生烃作用,即在生气膨胀力作用下,气水倒置界面得以维持并整体向上运移,从而形成大面积的地层饱含气状态(金之钧等,1999;Schmoke,2002;张金川等,2003a,2003b;解国军等,2004;张柏桥,2006;胡素云等,2007;邹才能等,2009a)。烃源岩层越厚,单位体积生气量越大,产生的压力就越大,形成的致密砂岩气藏规模也就越大。
1.致密砂岩气动力平衡方程
根据致密砂岩气藏的活塞式排驱特点,提出了弱水动力条件下的平衡方程,即天然气运移的阻力包括上覆储层毛细管压力、天然气重力、地层水压力等,驱动力主要为烃源岩生气产生的压力。驱动力和阻力之间的平衡方程为:
非常规油气地质学
式中:pgas为烃源岩中游离相天然气的压力(注入储层的压力),atm;pc为上覆储层毛细管压力,atm;ρggghg为天然气重力,atm,其中hg为天然气柱高度,m;ρf为上覆储层地层水压力,atm。
在上述平衡方程中:①毛细管压力可用拉普拉斯方程求出;②天然气重力可以直接求出;③地层水压力,在成藏时一般为静水压力,成藏后的压力可用现今压力代替,也可用有效骨架应力模型求解(石广仁,2006);④烃源岩中游离气压力,为烃源岩生气增压后烃源岩中流体和游离相天然气的压力,简称“游离气压力”。
烃源岩大量生气能产生巨大的膨胀压力,这早已被石油地质研究者所共识(李明诚,2004),但是迄今只有定性描述,未见定量计算模型。显然,在没有生气增压定量计算模型之前是无法真正定量模拟致密砂岩气藏的成藏过程的。
2.烃源层生气增压定量计算模型
超压形成的因素很多,除了生烃作用以外主要有差异压实作用、水热作用等。相比之下,生烃作用和差异压实作用是最主要的两种因素(李明诚,2004)。在地层进入压实成岩之后,特别是孔隙致密之后,压实作用基本停止,此时压实对排烃基本不起作用,而生气作用则成了排气的主要动力。依据气体状态方程,天然气压力(P)、体积(V)和温度(T)三者之间保持动态平衡。在地下高温、高压下,P、V和T三者之间的关系可用研究区的PVT曲线表示。根据这一原理建立的烃源层生气增压定量计算模型为:
非常规油气地质学
式中:Pgas为烃源岩生排气产生的压力,atm;Bg为天然气体积系数,m3/m3;Vp为烃源岩层孔隙体积,m3;Vw为烃源岩层孔隙水体积,m3;Vo为烃源岩层孔隙含油体积,m3;Vg为烃源岩层中游离相天然气体积(地表条件下),m3;hs为烃源岩层厚度,m3;Φ为烃源岩层的评价孔隙度,小数;Sw为烃源岩层中束缚水饱和度,小数;So为烃源岩层中残余油饱和度,小数;Qgas为单位面积烃源层生成的天然气体积(地表条件下),m3/km2;Qmiss为单位面积烃源岩层中散失的天然气体积(地表条件下),m3/km2,包括吸附气、扩散气和溶解气等;Qexp为单位面积烃源层已排出的游离相天然气体积(地表条件下),m3;初始值为0。
3.模拟步骤
模拟步骤如下:①建立地质模型,以下生、上储模型为例;②在平面上划分网格,网格边界尽可能与构造线(如断层线等)一致;③在纵向上按油气层组细分储层;④计算运移驱动力———烃源岩层中游离相天然气压力;⑤计算运移阻力———细层1的毛细管压力、天然气重力、地层水压力等;⑥比较运移驱动力和运移阻力,如果驱动力小于阻力则不能运移,即该细层1不能成藏,停止对该点的模拟,如果驱动力大于阻力则烃源层中的气能进入细层1,并排挤出细层1中的部分水;⑦天然气进入细层1并达到短暂的平衡后,随着烃源岩层生气量的增加,游离相天然气压力Pgas也在增加,重新计算Pgas,并计算细层2的运移阻力;⑧比较运移驱动力和运移阻力,如果驱动力小于阻力则不能运移,即细层不能成藏,停止对该点的模拟,如果驱动力大于阻力则烃源层中的气能进入细层2,并排挤出细层2中的部分水;⑨重复第⑦和第⑧过程,直到驱动力小于阻力或遇到盖层为止(如果压差超过盖层排替压力,则天然气将会突破盖层散失掉一部分,直到压差小于盖层排替压力,天然气才停止运移);⑩计算天然气聚集量,模拟结束。
4.天然气聚集量计算
进入致密储层的天然气聚集量可用下式表示:
非常规油气地质学
式中:Qgas为储层中天然气聚集量,m3;n为天然气进入到储层中的细层数,自然数;i为储层中的细层号,自然数;q为细层中天然气聚集量,m3;Sw为细层中束缚水饱和度,小数;hi为细层i的平均厚度,m;Ai为细层i的面积,m2;Φi为细层i的平均孔隙度,小数;Bgi为细层i的(地层压力对应的)天然气体积系数,m3/m3。
根据对比驱动力与阻力的关系,如果确定天然气只能进入到细层3,则上式中n为3。另外,细层中束缚水饱和度,可通过类比相邻地区的致密气藏获得,一般在30%~60%之间;天然气体积系数,可根据细层地层压力在PVT曲线上的反插值求得。进入致密储层的天然气还会有一部分损失,如部分溶解在地层水中,还有一部分会以扩散方式向外扩散等。这些损失可以用溶解气公式和扩散气公式计算(郭秋麟等,1998;石广仁,1999),在不要求高精度时可以不考虑。
5.关键参数
关键参数有:①天然气体积系数与地层压力关系曲线;②束缚水饱和度与孔隙度的关系曲线;③烃源层埋深、厚度、孔隙度、生气量、排气量(游离气量)等;④储层埋深或顶界构造图、等厚图,储层孔隙度等值图、孔喉半径等值图,现今储层流体压力系数等;⑤盖层排替压力。
“石油与天然气工程”下属的二级学科就业都如何?(硕士)
赵忠泉
(广州海洋地质调查局 广州 510760)
作者简介:赵忠泉,男,(1983—),硕士,主要从事海洋油气调查研究工作,E-mail:zzqhello@163。
摘要 利用地震数值模拟技术结合实际资料,可以建立各种地质体的地震识别模型,有效地避免地震现象的多解性,从而可以提高解释的精度。本文介绍了二维地质建模的方法流程及两种模拟方法-褶积法和PSPI波动方程法,前者无边界条件约束和频率域中的信号损失,简洁易行,计算稳定,应用广泛,是最早的地震波场模拟方法;后者通过求解波动方程,包含丰富的波场信息,能够充分反映地震波的动力学和运动学特征。实际应用中利用褶积法对三维潮道模型及简化的碳酸盐岩多旋回倾斜薄互层沉积模型进行了模拟;利用零炮检距的频率波数域的波动方程法模拟了生物礁的地震响应,结果对于碳酸盐岩生物礁识别有一定指导意义。
关键词 地质建模 数值模拟 褶积法PSPI法
不同地质体由于其岩性、物性、含油气性、内部结构和岩石组合等的差异,在地震上具有不同的反射特征,包括内部结构、外部形态、振幅、频率等参数。由于地震波在地下地质体中传播的复杂性,加上各种干扰,造成了地震剖面中的各种反射现象存在多解性,大大增加了地震解释的难度。利用地震数值模拟技术结合实际资料,在建立不同地质体的地震识别模型的同时也有效地避免地震现象的多解性,从而可以提高解释的精度。
1 地质建模
地震数值模拟技术的基础是地质地球物理模型的建立,可归结为对地质及地球物理模型结构的数学描述。
二维封闭结构模型用于建立复杂地质模型。二维封闭结构模型就是定义相同地质属性为一独立封闭的地质单元,按照地质属性将地质模型划分成多个独立封闭的地质单元,把所有独立封闭地质单元按照空间分别有序地排列起来,这样组成的集合体就构建了一个二维地质模型。封闭结构模型是以积木方式定义地下地质结构,可以描述非常复杂的地质体。二维封闭结构模型被描述为具有相同地质属性(速度、密度等),并被地层界面、断层界面或模型边界所围成的地质单元的有机组合。对封闭结构模型的描述,实际上就是描述封闭地质单元和封闭地质单元之间的关系,前者包括对封闭地质单元属性和封闭地质单元边界的描述;后者是对地质单元空间关系的描述,也就是描述封闭地质单元边界相接关系及地层属性[1]。
在进行数值模拟过程中,为了验证某些复杂地质体的波场特征,需要绘制多种不同的地质模型,通常可借助常规绘图软件(绘图板、Photoshop、CorelDraw,AutoCAD等)绘制好二维封闭结构面,再根据图像处理中的区域填充算法(填充和扫描转换填充),对不同二维封闭结构面进行不同颜色的填充。其中不同颜色代表不同的二维封闭结构面属性(速度、密度等);合并相同属性的封闭面,形成最终的二维封闭结构模型[1]。为了得到二维封闭结构模型的属性(速度、密度等)模型,需要对二维封闭结构模型的彩色图进行速度像素空间和属性空间转换,根据颜色空间和属性空间的相互映射,就可以得到复杂地质体的属性(速度、密度等)模型,如图1为模型创建流程图。
图1 二维封闭结构模型建立流程图
2 两种数值模拟方法
2.1 褶积模型
在褶积模型中,我们把地震反射信号s(t)看作是地震子波w(t)与地下反射率r(t)的褶积。地震子波w(t),使用实际地震系统记录到的地下一个单独的反射界面反射的波形(如图2,理想的无噪声褶积过程)。反射率r(t)则代表理想的无噪声地震记录。记录到的地震道s(t)可看作是地震信号w(t)* r(t)与可加噪声n(t)之和,因此可以把地震道看作是一种有噪声干扰的,经过了滤波的地下反射率的变形。
在无噪声褶积模型中,我们把地震信号S(t)看作是地震子波w(t)和地下反射系数r(t)的褶积:
南海地质研究.2012
式中:s(t)——合成地震记录;
r(t)——反射系数;
w(t)——地震子波。
图2 褶积过程
2.2 PSPI波动方程法
通过求解波动方程的数值模拟方法,能够充分反映地震波的动力学和运动学特征,波场信息丰富,模拟结果较为准确。这里仅介绍适合横向速度剧烈变化的频率-波数域相移加插值的波场延拓方法[2]。
相位移加插值的波场延拓方法,简称PSPI法,基本思想是在波场向下延拓的每个深度步长Δz之内,将波场的延拓分成两部进行,首先用L个参考速度V1,V2,…VL,将位于深度zi处的波场p(x,zi,ω)延拓到zi+1=zi+Δz处,得到L个参考波场p1(x,zi+1,ω),p2(x,zi+1,ω),…,PL(x,zi+1,ω)。第二步,按实际的偏移速度V(x,z)同参考速度V1,V2…,VL的关系,用波场插值的方法求出zi+1处的波场p(x,zi+1,ω),按同样的步骤,可将zi+1处的波场值p(x,zi+1,ω)延拓到深度zi+2,得p(x,zi+2,ω),直到延拓到最大的深度zmax为止。
对于各向同性介质,取二维标量声波方程作为延拓的基本方程:
南海地质研究.2012
式中,p=p(x,z,t)为二维地震波场值;x,z分别为水平方向和垂直方向坐标轴;t为时间轴;v(x,z)为纵、横向都可变的地震波传播速度。将式(2)分别对x、t作傅氏变换,考虑到并考虑到?2/?x2和与(-ikx)2和(iw)2的对应关系,可得:
南海地质研究.2012
式中, 是p(x,z,t)的二维傅氏变换;v为地震波速度;w为圆频率;kx为水平波数;kz为垂直波数。零炮检距情况下的地震记录模拟只考虑单程波,因此可得到相位移波场延拓公式如下:
南海地质研究.2012
式中, (kx,zi,w)为频率波数域波场值;Δz为深度延拓步长;kx为测线方向波数;kz为深度方向波数。式(4)为二维波场正演公式,其延拓方向为由地下向地面延拓;式(5)为二维波场偏移公式,其延拓方向为由地面向地下延拓。
为了适应地下地震波场速度在纵横向均可变的要求,在同一延拓深度内用几个不同地震波速度分别作相移,再用拉格朗日插值公式进行插值,就可求出所有的以不同速度传播的延拓波场值P(x,zi+1,t),从而近似地解决了横向变速时的波场延拓问题[3]。
3 模拟实例
3.1 三维潮道数值模拟
运用褶积原理建立了一个简单三维潮道模型,此三维潮道事实上为多个(128)二维剖面排列而成,三维模型的样点为128×128×128,利用MATLAB实现。选用子波为雷克(Ricker)子波,其公式为:
南海地质研究.2012
其中fp为主频。在处理过程中选用主频为fp=40 Hz、样间隔2 ms,对称样点数为24,子波波形如图3。
图3 雷克子波
图4 潮道平面图
图4为潮道平面图,该图仅反映了潮道的平面形态,作为计算机实现三维建模的边界控制,横坐标代表inline线,纵坐标代表xline(crossline)线,图5为三维地质模型示意图,模型较简单,整体由三个水平层叠置而成,在第二层和第三层之间镶嵌了形如图4的潮道,此潮道没有考虑进水方向,根据此地质模型进行计算机地震正演模拟,可得到相应三维地震数据体,从图中可以看到,**虚线(上)和蓝色虚线(下)位置上,分别横跨了三个潮道分支和两个潮道分支,就是说在相应两条虚线位置上的两条测线应该分别有三个和两个潮道显示,提取相应的两条剖面如下图6和图7:
图5 三维地质模型
图6 xline=100(**虚线)剖面
图7 xline=100(蓝色虚线)剖面
再在三维数据体中沿水平方向做切片,即提取时间切片。图8为时间切片在地震剖面上的位置示意图,图中五条标示线从上到下依次为白色实线、**虚线、白色实线、红色虚线和白色实线,与之对应的时间分别为70 ms、85 ms、95 ms、99 ms和110 ms(时间范围是0~128 ms),图9~图13为相应切片,从图中可以看出,随着所做切片时间的增大(深度的增加),潮道的展布范围逐渐减小,由于地层是水平层状的,使得时间切片等同于地层切片和沿层切片,其切片效果非常明显,切片中潮道形态得到了很好的展示,但是在多个切片中发现,从可以见到潮道形态一直到潮道消失的时间范围是在70~110 ms之间,而潮道的真实范围是在80~100 ms之间,显然依据切片所圈定的潮道的范围相比真实的范围扩大了,究其原因是由于不管选取哪一波,子波都有一定的延续长度和有限频宽,这就限制了合成地震记录本身的分辨率并不能达到等时厚度反射系数序列的分辨率。因此在对实际地震资料进行解释的时候,对地质异常体边界的识别应该考虑地震子波并非脉冲波所带来的影响。
图8 剖面示意图
图9 切片t=70 ms
图10 切片t=85 ms
图11 切片t=95 ms
图12 切片t=99 ms
图13 切片t=110 ms
3.2 薄互层沉积模型
图14为简化的碳酸盐岩多旋回倾斜薄互层沉积模型(Zeng,2003),模型简化是为了更好地突出由岩相控制的波阻抗结构和地震信号之间的相互关系。该模型所有倾斜的倾角都相同,每层都有相同的垂直时间厚度(5 ms或15 m,速度为6000 m/s),泥岩与低孔隙度颗粒灰岩的波阻抗差,以及低孔隙度颗粒灰岩与高孔隙度颗粒灰岩的波阻抗差都相同,所有高孔隙度颗粒灰岩具有相同的深度范围,综合起来形成了一个水平的岩性地层单元。
其时间域地震响应(图15)中,高频情况下(60 Hz雷克子波),地震反射被建设性地调谐到时间地层单元,因此地震同相轴沿着时间地层单元分布(图15a)。当子波频率减到40 Hz时,地震反射对时间地层单元和岩性地层单元都有响应(图15b)。当用30 Hz雷克子波时(图15c),地震同相轴破坏性地调谐到时间地层单元和建设性地调谐到岩性地层单元,因而时间地层单元的反射进一步变弱,地震同相轴被岩相反射所控制[4]。
这个模拟过程强调了了解地质格架和时间地层单元以及岩性地层相带厚度尺度的重要性。时间地层(图15a)和岩性地层(图15c)成像都是有用的,前者用于对比,后者用于粗略的储层评价。然而,这两种响应不能混淆在一起。图15b中的两组相互矛盾的地震同相轴会造成地震象[4]。
图14 简化的碳酸盐岩多旋回倾斜薄互层沉积模型
3.3 生物礁数值模拟[5~7]
频率—波数域的相移加插值偏移(PSPI)在每一个深度间隔内使用多个参考速度进行偏移,由多个偏移结果插值生成最终的偏移剖面,所用插值的速度越多,越能反映实际介质的速度变化情况,此方法在成像精度及横向变速适应性上具有很大的优越性,但处理所需的时间稍长,鉴于本文的二维叠后建模对处理时间没有过高要求,因此应用PSPI方法做正演、偏移。
图16为某区块过生物礁的原始地震剖面,图17为根据此剖面建立的生物礁速度模型:模型速度变化范围是5600 m/s到5980 m/s,从图16中可以看出生物礁的底界面清晰可辨,围岩有披覆现象,内部呈杂乱反射。为了检验该地质建模的正确性,先用PSPI方法对该模型进行了波场正演模拟计算,其模拟剖面如图18所示。由于生物礁埋藏深,生物礁顶底反射的弧度较大,不规则点的绕射波杂乱,因此用图15的速度模型对其进行叠后时间偏移,得到了偏移剖面(图19),横向表示256个地震道,纵向表示零偏移距反射时间,礁体最大时间厚度约40 ms。从图19可以看出,模拟记录中的礁体顶界与原始剖面有一定差距,但是生物礁底界反射和内幕反射以及侧翼反射与原始剖面基本一致,其他的地层界面形态与原始剖面也吻合较好,在一定程度上验证了地质模型的正确性,说明当生物礁与围岩之间存在一定波阻抗差异时,在地震剖面上必然出现异常反映,经过有效的构造和参数反演,能够将其分辨出来。相信通过模型改进以及算法中参数的调整,能够与原始剖面更好地吻合,从而为生物礁的地震解释提供一种有力的验证工具。
图15 图14模型时间域地震响应
4 结论
地震数值模拟(正演)技术基于地球物理模型的建立,运用概念二维封闭结构地质模型的建立方法,得到复杂地质体的数学模型,结合各种算法对其进行模拟从而可以验证相应地质体的地震波场特征;结合实际资料建立不同地质体的地震识别模型,可以有效地减少地震现象的多解性,从而提高解释的精度;褶积法无边界条件约束和频率域中的信号损失,简洁易行,计算稳定,应用广泛,本文用此方法模拟的伪三维潮道模型及倾斜薄互层模型取得了较好的效果;通过求解波动方程的数值模拟方法,包含丰富的波场信息,能够充分反映地震波的动力学和运动学特征,PSPI波场沿拓方法为其中之一,利用正演与偏移相结合的流程模拟了生物礁的地震响应特征,检验解释成果的正确性,为生物礁的地震解释提供了一种有力的检验工具。
图16 原始剖面
图17 生物礁地质速度模型(256×256)
图18 正演记录(子波主频30Hz)
图19 偏移剖面(子波主频30Hz)
参考文献
[1]刘远志.碳酸盐岩地震相分析与数值模拟[D].成都:成都理工大学,2009.
[2]韩建彦.复杂地质体地震正演与偏移[D].成都:成都理工大学,2008.
[3]贺振华,王才经等.反射地震资料偏移处理与反演方法[M].重庆:重庆大学出版社,1989.
[4]Zeng Hongliu &Kerans,C.Seismic frequency control on carbonate seismic stratigraphy;a case study of the Kingdom Abosequence,West Texas,American Association of Petroleum Geologists Bulletin,2003.87,273~293.
[5]贺振华,黄德济,文晓涛,等.碳酸盐岩礁滩储层多尺度高精度地震识别技术[R].成都:成都理工大学地球探测与信息技术教育部重点实验室,2009.
[6]熊晓军,贺振华,黄德济.生物礁地震响应特征的数值模拟[J].石油学报,2009,30(1):7~65.
[7]熊忠,贺振华,黄德济.生物礁储层的地震数值模拟与响应特征分析[J].石油天然气学报,2008,30(1):75~78
The lication and analysis of two kinds of seismic numerical simulation method based on the2D-geological modeling
Zhao Zhongquan
(Guangzhou Marine Geological Survey,Guangzhou,510760)
Abstract:Pick to using seismic numerical simulation technology combined with the actual seismicdata,we can build all kinds of seismic recognition model of geologic body and effectively oidthe multiple solutions of seismic phenomenon,which can improve the precision of the explana-tion.This paper describes the method of the process of 2D geological modeling and two simulationmethods,seismic convolution method and PSPI we equation method,the former has no bounda-ry condition and the signal loss in frequency domain,is concise and easy,it can be calculatedsteadily and be lied widely,is the earliest simulation method in seismic we field,the latterbased on the we equation,it contains the rich information in we field,can fully reflect thedynamics and kinematics characteristics of seismic we.In the practical lication,we use theconvolution model in 3D-tidal channel model and the multi-cyclic simplified deposition model oftilt thin interbed layer of carbonate;We simulate the seismic response of reefs using the method ofzero-offset we equation in frequency and we number domain,it is confirmed that the resulthas definite significance for the identify of the reef.
Key words:Geological modeling Numerical simulation Convolution PSPI method
Jason反演技术在天然气水合物速度分析中的应用
你是要转专业吗?那会有些难度。因为学石油的话,要看你本科是不是学相关专业的,夸得太多,导师是不要的。你是黑龙江的,自然知道大庆石油学院了,这个我不用说了,你比我清楚。
西南石油当然也是很牛的学校,每年毕业生没毕业就被签走了,大部分去了东海,南海石油开地区,待遇很好,年薪十几万。着你肯定也清楚。不然怎么会想考石油。最好石油大学,不论是实力,还是地域都是其他两个学校没法比的。
下面说一下你问的那两个专业。
石 油 与 天 然 气 工 程 Petroleum and Natural Gas Engineering
石油与天然气工程是研究石油与天然气勘探、评估、开、油气分离、输送理论和技术的工程领域。其工程硕士学位授权单位培养从事石油与天然气生成环境、勘探、油气井工程设计、测井数据集和处理、油气田开、油气储运以及工程管理的高级技术人才。研修的主要课程有:政治理论课、外语课、工程数学、弹塑性力学、计算机应用技术、高等流体力学、高等渗流力学、油藏数值模拟、油田化学、收率原理、现代油气勘探技术、现代油气井工程、现代凿井工程、天然气工程、高等油藏工程、高等油工程、高等输油管道工程、高等输气管工程、油气田输系统、油气管道运行模拟、天然气液化技术、高等管理学基础、能源经济等。
一、概述
石油与天然气工程是一个运用科学的理论、方法、技术与装备高效地钻探地下油气、最大限度并经济有效地将地层中的油气开到地面,安全地将油气分离、计量与输运的工程技术领域。石油与天然气作为人类社会能源的重要组成部分,由于其不可替代性和自身的不可再生性,在世界经济的发展、人类社会生活与文明中占有极其重要的地位。由于石油与天然气存在着储层埋藏深,物性有低渗、超低渗,油品有稠油、超稠油,加之高压高温、地层非均质、井眼形成难等特点,给钻探与开发增加了很大的困难。目前,我国石油与天然气收率还比较低、地质条件复杂,深井与超深井钻探与开成本还比较高,因此是一项高投入、高风险、但效益明显的产业。在我国,2l世纪将是石油与天然气工程得以迅速发展的时代。
石油与天然气工程涉及工程力学、流体力学、油气地质、渗流物理、自控理论、计算机技术等基础和应用学科,需要解决的工程问题有钻井、完井、测试、油气藏开发地质、油气渗流规律、油气田开发方案与开技术、提高收率、油气矿场收集处理、长距离输送、储存与联网输配等工程问题。本工程领域与矿产普查与勘探、地球探测与信息技术、矿工程、工程力学、化学工程、机械工程、交通运输工程等学科相关。
二、培养目标
培养从事石油与天然气工程领域所属油气井工程、油气田开发工程、油气储运工程中科技攻关、技术开发、工程设计与施工、工程规划与管理的高层次人才。
石油与天然气工程领域工程硕士应具有本工程领域坚实的基础理论和宽广的专业知识及管理知识,掌握解决工程问题的先进方法和现代化技术手段,具有独立担负工程技术或工程管理工作的能力以及解决工程实际问题的能力,具有较好的综合素质和较强的创新能力和适应能力。掌握一门外语,能较熟练地使用计算机。
三、领域范围
领域范围有以下几个方面。
油气井工程:油气井工程力学,油气井工作液的化学和力学,油气井工程测量与过程控制,油气井测井数据集、处理与解释。
油气田开发工程:油气藏描述及开发地质建模的理论与方法,渗流理论和油气藏数值模拟,油气田开发理论与方法,油气工程理论与技术,提高收率理论与技术,油气化学工程与理论。
油气储运工程:油气长距离管输技术,多相管流及油气田集输和油气处理技术,油气储运及营销系统优化,油气管道和储罐的强度研究,油气储运设施施工及安全、防腐技术。
石油与天然气工程管理。
四、课程设置
基础课:科学社会主义理论、自然辩证法、外语、工程数学、应用弹塑性力学、计算机应用基础、技术经济学等。
技术基础课:高等流体力学、高等渗流力学、油藏数值模拟、油田化学、提高收率原理、渗流物理、油气藏经营管理、运筹学等。
专业课:现代油气井工程、现代完井工程、天然气工程、高等油藏工程、高等油工程、高等输油管道工程、高等输气管道工程、油气田集输系统、油气管道运行模拟、项目管理、能源经济学等。
上述课程可定为学位课程和非学位课程。此外,还可以由培养单位与合作企业根据实际需要确定其他课程。课程学习总学分不少于28学分。
五、学位论文
论文选题应直接来源于生产实际或者具有明确的生产背景和应用价值,或者是一个完整的工程技术项目的设计或研究课题,或者是技术攻关、技术改造专题,或者是新工艺、新设备、新材料、新产品的研制与开发,也可以是工程管理课题。选题要求有难度、有新意、有足够的工作量。
对于技术攻关的成果,应有与国内外同类理论、方法与技术的对析;对于新工具、新工艺设计与开发的技术成果,论文应具有设计方案的比较、评估、参数计算模型与结果、完整的图纸;对于重大工程项目管理的成果,必须给出项目的系统组成、目标分析、风险与效益分析、与管理方案及措施、收益与创新管理方法。://.wszsw
一、石油工程计算技术
“石油工程计算技术”是我校“石油与天然气工程”一级学科下自主设置的二级学科,具有博士和硕士学位授予权,主要包含以下研究方向:
1、石油工程仿真模拟计算
(i) 油气井工程中的计算与仿真; (ii) 油气藏渗流模拟与仿真;
(iii) 油气井生产过程动态模拟与仿真; (iv) 储运与集输过程的计算及仿真。
2、油气田开发系统信息分析与处理
(i) 动态数据处理与数据挖掘 ; (ii) 油气田数据库及管理信息系统;
(iii) 系统模式识别与系统辨识; (iv) 油气田开发软件开发与集成技术。
3、 石油工程数值计算
(i) 微分方程数值解 ;(ii) 优化计算方法;
(iii) 数值代数方法; (iv) 并行计算技术
可以说这个专业就是计算机专业,只不过把计算机应用在了石油工程上面,一般搞计算机的人都可以搞这个,所以,竞争力很强。不建议考。以上是个人看法,仅供参考。
高分介绍研究生地质工程专业
梁劲1 王宏斌1,2 梁金强1
(1.广州海洋地质调查局 广州 510760;2.中国地质大学(北京)北京 100083)
第一作者简介:梁劲,男,11年生,高级工程师,1995年毕业于成都理工学院信息工程与地球物理系应用地球物理专业,主要从事天然气水合物调查与研究工作。
摘要 本文用Jason 反演技术对南海北部陆坡A 测线纵波速度进行计算,结合BSR、振幅空白带以及波形极性反转等多种水合物赋存信息的分析,对水合物成矿带的速度特征进行了综合研究,结果表明:低速背景中的高速异常,是天然气水合物赋存的重要特征;高速异常体一般呈平行于海底的带状分布;在高速异常的内部,速度也是不断变化的。一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,反映在水合物矿带内部,水合物饱和度由矿体中心向边缘逐渐降低的特征。本文的研究成果进一步表明高精度速度分析不仅可以帮助寻找水合物矿点,还可以进一步判定水合物的富集层位。
关键词 Jason 反演技术 天然气水合物 速度分析
1 前言
天然气水合物是在低温、高压环境下,由水的冰晶格架及其间吸附的天然气分子组成的笼状结构化合物,广泛分布于海底和永久冻土带。温度和压力是天然气水合物形成和保存最重要的因素(王宏斌等,2004)。针对天然气水合物的野外调查及研究表明:高分辨率的地震勘探方法是天然气水合物调查评价中行之有效的方法。地震反演技术一直是地震勘探中的一项核心技术,其目的是用地震反射资料反推地下的波阻抗、速度、孔隙度等参数的分布,从而估算含天然气水合物层参数,预测天然气水合物分布状况,为天然气水合物勘探提供可靠的基础资料。常用的地震反演技术有Jason、Strata、Seislog和ISIS等,其中Jason反演技术在含天然气水合物层预测中因其分辨率高而得到广泛推崇,它主要由有井约束和无井约束两种方法组成(廖曦等,2002)。
速度异常是判断天然气水合物是否赋存的重要条件之一。结合BSR(Bottom Simulating Reflector)特征、波形极性特征、振幅特征以及AVO特征等目前已成为判断是否存在天然气水合物层主要手段(史斗等,1999)。大量的测试数据显示:水合物的速度与冰的速度较为接近,而比水高。与含水或含游离气沉积层相比,含水合物沉积层的密度降低,声波速率增大,含水合物层的地层速度往往比一般的地层速度高,含水合物沉积层的下部由于充填了水或气,而使水合物底界面出现速度负异常。因此,地层中速度反转是水合物赋存的一个地球物理标志。含水合物地层的声波速度与水合物的含量有关,水合物含量越高,其声波速度越高。从速度方面看,BSR是上覆高速的含水合物地层与下伏较低速的含水层或含气层之间的分界面。通常,海洋中浅层沉积层的地震纵波速度为1600~1800m/s,如果存在水合物,地震波速度将大幅提高,可达1850~2500m/s,如果水合物层下面为游离气层,则地震波速度可以骤减200~500m/s。因此,在速度剖面上,水合物层的层速度变化趋势呈典型的三段式,即上下小、中间大的异常特征(张光学等,2000)。西伯利亚麦索雅哈气田的资料表明,在原为含水砂层内形成水合物之后,其纵波的传播速度会从1850m/s提高到2700m/s;而在胶结砂岩层,这种速度会从3000m/s提高到3500m/s。深海钻探的570站位的测井结果表明,由含水砂岩层进入含水合物砂岩层时,密度由1.79g/cm3降低到1.19g/cm3,声波传播速度从1700m/s提高到3600m/s,且电导率剧烈下降。
Cascadia海域ODP889站位的VSP测井资料反映水合物底界为强烈的负速度界面,速度从水合物沉积物层的1900m/s陡降到含游离气层的1580m/s,由于VSP测井为地震测井,受钻井因素的影响较少,因此认为VSP测井真实地反映了水合物沉积层底界的速度变化(陈建文等,2004)。
国土部广州海洋地质调查局在2001~2004年在南海北部陆坡进行10000多公里的天然气水合物高分辨地震调查。本研究利用Jason反演技术,通过对南海北部陆坡区的地震速度资料的精细分析,在已圈定BSR分布范围的基础上研究陆坡区各沉积层的速度特征,最后对速度值与水合物的关系进行了分析和探讨。
2 方法原理
纯天然气水合物的密度(0.9g/cm3)和海水密度相近,而游离气的含量又十分有限,这就决定了产生BSR的波阻抗差主要由速度造成。速度反演技术的特点是在无井约束时,以地震解释的层位为控制,对所有的地震同相轴来进行外推内插来完成波阻抗反演,这样就克服了地震分辨率的限制,最佳的逼近了测井分辨率,同时又使反演结果保持了较好的横向连续性。速度反演技术的主要原理是:①通过最大的似然反褶积求得一个具有稀疏特性的反射系数系列;②通过最大的似然反演导出波阻抗;③通过波阻抗计算速度。该方法的主要优点是能获得宽频带的反射系数,是一种基于模型的反演,具有多种建模方法,对所建模型进行比较分析,并使地质模型更趋合理,反演结果更加真实可靠(郝银全等,2004)。
波阻抗反演方法的出发点是认为地下的反射系数是稀疏分布的,即地层反射系数由一系列叠加于高斯背景上的强轴组成。具体反演是从地震道中,根据稀疏的原则抽取反射系数,与子波褶积生成合成地震记录,利用合成地震记录与原始地震道的残差修改反射系数,得到新的反射系数序列,然后再求得波阻抗。其具体步骤是:
设地层的反射系数是较大的反射界面的反射和具有高斯背景的小反射叠加组合而成的,根据这种设导出一个最小的目标函数(安鸿伟等,2002):
南海地质研究.2006
式中:R(K)为第一个样点的反射系数,M为反射层数,L为样总数,N为噪音变量的平方根,λ为给定反射系数的似然值。
最大的似然反演就是通过转换反射系数导出宽带波阻抗的过程。如果从最大的似然反褶积中求得的反射系数式R(t),则波阻抗:
Z(i)=z(i-1)×(1+R(i))/R(1-i) (2)
利用波阻抗和速度的关系式:
v=Z(i)/ρ (3)
即可得到速度值。其中,ρ为地层密度,可从区域测井资料结合该测线重力资料反演求取。
在上述过程中为了得到可靠的反射系数估算值,可以单独输入波阻抗信息作为约束条件,以求得最合理的速度模型。一方面,速度反演结果是一个宽频带的反射序列和波阻抗及速度数据,同时加入了低频分量,使反演结果更能正确反映速度变化规律;另一方面,它有多种质量控制方法,具体表现为监控子波的选取、同相轴的连续追踪、反演结果准确性的判断和提供多种交汇显示的相关性分析。所以利用速度反演可对地震剖面上任一相位进行速度反演,在每一个CDP点都可得到任一个同相轴速度数据,并利用二维的反射波的速度层析成像反演方法得到高度连续的速度剖面,如果地震测线足够密,还可利用三维速度反演得到速度体图像。
3 实现过程
3.1 初始模型的确立
在地质规律的指导下,利用地震和测井资料开展沉积特征分析和沉积旋回划分;建立岩石-电性关系,进行砂层组和单砂层对比;在地震剖面上提取各含油砂层组反射波属性,建立地震属与矿体的关系,实现地震-测井综合预测矿体平面分布厚度,开展层间矿体组外推预测;建立初始速度场;在地震属性约束下开展地震反演,反演层间小层矿体厚度。细分层反演层位的标定正确与否直接影响反演结果的精度。因此,在反演过程中对子波提取、能谱特点、信噪比、频谱及反射系数的研究至关重要(闫奎邦等,2004)。技术路线流程如图1所示:
3.2 初始速度场的获得
初始速度场的获得首先要对速度谱进行解释,速度谱的解释和取值是否合理,将直接影响均方根速度的计算精度。具体步骤如下:
1)速度谱的解释先从地质条件简单、反射层质量好、能量团强、干扰少的剖面段开始,绘制叠加速度-反射时间曲线,并逐渐向外扩展;
2)结合地震剖面的反射特征,判断速度极值点是否正确,并选择读取能量团最大的极值点。排除干扰波能量团,从而求得有效波的叠加速度;
3)对相邻速度谱进行比较,通过比较速度谱曲线的形状、相同反射层的速度极值等方法予以检查和修改。
4)每隔40个CDP拾取一组数据,利用地震剖面上的反射倾角数据对它们进行校正,便可得到均方根速度(梁劲等,2006)。
图1 速度反演技术线路流程图
Fig.1 The flow chart of the velocity inversion of technical route
3.3 子波的提取
子波提取时,要使能量集中于子波的主瓣,与地震子波形态吻合。如果所提子波近于零相位,则从波峰向两侧能量衰减较快,波峰两侧波形对称;在子波的能谱特征分析,要使能量都集中在地震波的主频范围内;有井资料时,要对井资料都作了子波与地震波自动关联质量控制。保证子波能谱与地震波能谱相吻合,是反演中较为重要的一方面,子波能谱的峰值与地震波主频的能谱峰值相吻合。首先了解合成记录与地震记录之间的偏差。通过合成记录与地震记录之间的偏差分析,对Jason反射系数偏差、能谱偏差进行进一步的校正,使合成记录与地震记录之间的偏差减小。然后通过反射系数与地震资料之间偏差分析,取相应的手段校正,使地层与合成记录反射系数相吻合。再进行信噪析,使反演处理后的信噪比得到最大限度的提高。通过一系列质量控制手段,使各油层合成记录与地震记录的标定精度得到了较大的提高。
关于速度反演可信程度,不能完全由反演方法确定,关键在于获取地震记录的质量和反演前处理流程的振幅保真度。另一个影响因素是数值模拟结果应当是比较准确的,这与计算方法有关,也与子波拾取和地质构造模型有关。至于反演结果的灵敏度,主要由拟合误差值和收敛速度来判断。如果给定的初始模型正确,即与实际地质结构一致,则拟合的误差较小且收敛速度快。本文工作由于受实际情况限制,没有实际的测井资料验证,因此反演所得速度的准确性和精度会受到一定程度的影响。
4 速度剖面特征
运用多种特殊地震成像综合分析,是天然气水合物地震资料解释的关键技术。目前一般用识别BSR、振幅空白带、波形极性反转、速度异常、波阻抗面貌和AVO等天然气水合物地震相应特征来综合分析沉积物中是否含有水合物。高精度的层速度分析可帮助判定水合物的富集层位,速度及振幅异常结构是水合物与下伏游离气共同作用形成的特殊影像,剖面上表现为“上隆下坳”结构,多层叠合构成一明显的垂向“亮斑”这一特殊成像结构在未变形的水合物盆地内较适用于寻找水合物矿点,并可据此定量估算水合物盆地内水合物的数量,分析BSR上下的详细速度结构,是水合物地震资料综合解释的重要手段(张光学等,2003)。
图2 南海北部陆坡测线A道积分剖面
Fig.2 Trace integration profile of the line A in north slope of the South China Sea
图2是南海北部陆坡测线A的地震反射道积分剖面,从图中可以看出,该剖面中部及右下角距海底大约350ms处出现一强振幅反射波,大致与海底反射波平行,与地层斜交,BSR特征明显。在波形极性方面,海底反射波和BSR都表现为成对出现的强振幅双峰波形特征,海底反射波表现为蓝红蓝特征,而BSR表现为红蓝红特征,这表明相对于海底,BSR显示出负极性反射同相轴,即所谓的极性反转(与海底反射相反)。反射波的极性是由反射界面的反射系数决定的,而反射系数则与界面两侧的波阻抗差有关。实际上,海底和BSR都是一个强波阻抗面,海底是海水和表层沉积物的分界面,上部为低速层,下部为相对高速层,反射系数为正值;BSR是含水合物层与下部地层(或含气层)的分界面,上部为高速层(水合物成矿带是相对高速体),下部为相对低速层(如含游离气,则速度更低),反射系数为负值,因此造成了BSR和海底反射波的极性相反现象(沙志彬等,2003)。图3是用速度反演法反演出来的纵波速度剖面,该速度剖面明显显示出一近似平行于海底的相对高速地质体,其位置恰好在BSR上方。高速地质体的纵波速度大约在2000~2400m/s,其上面的低速层的纵波速度大约在1500~1800m/s,而下面的低速层的纵波速度大约在1500~1900m/s,没有明显的游离气存在特征,但根据其高速地质体特征、BSR以及波形极性反转分析,可以认为南海北部陆坡测线A的相对高速地质体极可能是水合物成矿带。
图3 用速度反演法计算的南海北部陆坡测线A纵波速度剖面
Fig.3 P velocity profile of the line A in north slope of the South China Sea computed by velocity inversion
由图3可见,水合物成矿带内部速度是变化的,表明水合物分布不均匀,呈平行于海底的带状分布,中心速度最高,由中心到边缘速度逐渐降低。海底以下有3个近似平行海底的低速和高速带:①海底与高速体之间的相对低速带,为水饱和带;②水合物成矿带;③水合物成矿带下的低速带。水合物成矿带下面的低速带在速度剖面上没有明显的低速特征,由此推断水合物成矿带下可能不含游离气,或者是气体的饱和度很低。
5 结论
水合物的生成除了需要一定的温度和压力条件外,还需要大量的碳氢气体和充足的水。这就需要地层具有较高的孔隙度和渗透率。未固结沉积岩的孔隙度很高,渗透率大,具备水合物生成的物理条件。具备这种特征的未固结沉积岩的地震波速度较低,而含水合物地层的地震波速度增大。这就形成了水合物成矿带作为低速背景中的高速地质体特征。另外,水合物的生成受温度和压力控制,一般情况,等温面和等压面近似平行于海底,因此低速背景中近似平行于海底的相对高速地质体是水合物成矿带的特征(刘学伟等,2003)。
通过对南海北部陆坡A测线纵波速度的计算,并且结合BSR和振幅空白带识别以及波形极性反转等多种特殊地震成像进行综合分析,我们可以进一步了解水合物成矿带的速度特征:揭示水合物成矿带的高速异常一般呈平行于海底的带状分布,在高速异常的内部,速度也是不断变化的,一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,该现象反映在水合物矿带内部,水合物分布并不均匀,水合物饱和度由矿体中心向边缘逐渐降低。分析BSR上下的详细速度结构,是水合物地震资料综合解释的重要手段。高精度速度分析可帮助判定水合物的富集层位,较适用于寻找水合物矿点,并可据此估算水合物量。
参考文献
安鸿伟,李正文,李仁甫,等.2002.稀疏脉冲波阻抗反演在XY油田开发中的应用.石油物探,41(1):56~60
陈建文,闫桂京,吴志强,等.2004.天然气水合物的地球物理识别标志.海洋地质动态,6:9~12
郝银全,潘懋,李忠权.2004.Jason多井约束反演技术在油气储层预测中的应用.成都理工大学学报,31(3):2~300
梁劲,王宏斌,郭依群.2006.南海北部陆坡天然气水合物的地震速度研究[J].现代地质,20(1):123~129
廖曦,马波,沈浩,等.2002.应用Jason软件进行砂体及含气性预测.天然气勘探与开发,25(3):34~42
刘学伟,李敏锋,张聿文,等.2005.天然气水合物地震响应研究——中国南海HD152测线应用实例.现代地质,19(1):33~38
沙志彬,杨木壮,梁金强,等.2003.BSR的反射波特征及其对天然气水合物识别的应用.南海地质研究,15(1):55~61
史斗,郑军卫.1999.世界天然气水合物研究开发现状和前景.地球科学进展,14:330~339
王宏斌,梁劲,龚跃华,等.2005.基于天然气水合物地震数据计算南海北部陆坡海底热流.现代地质,19(1):67~73
闫奎邦,李冬梅,吴小泉.2004.Jason反演技术在岩性识别中的应用.石油物探,43(1):54~58
张光学,黄永样,陈邦彦,主编.2003.海域天然气水合物地震学.北京:海洋出版社
张光学,文鹏飞.2000.南海甲烷水合物的地震特征研究,首届广东青年科学家论坛论文集,中国科学技术出版社
The Application of Jason Inversion Technology in Velocity Analysis of Gas hydrate
Liang Jin1 Wang Hongbin1,2 Liang Jinqiang1
(1.Guangzhou Marine Geological Survey,Guangzhou,5107602.China University of Geosciences(Beijing),Beijing,100083)
Abstract:The P velocity of A seismic profile in the north slope of the South China Sea were calculated by Jason inversion method.The velocity characterostic of the gas hydrate bed was researched in detail based on the calculated result and the information of gas hydrate existing including BSR,amplitude blanking and polarity reversion of the weform.Research shows that:The abnormity of higher velocity in the background of lower velocity is an important characteristic of gas hydrate existing;The abnormity of higher velocity which distribute as a belt usually parallel to the seafloor;The velocity changes gradually at the inner of the abnormity of higher velocity with the highest velocity at the center of the abnormity whereas the lowest velocity at the margin of it,which suggests that the saturation of gas hydrate decreases gradually from the center to the margin.The result that mentioned above suggest that high resolution velocity analysis not only help to search the hydrate spot but also help to estimate the rich layer of gas hydrate.
Key Words:Jason Inversion Technology Gas hydrate Velocity Analysis
你说的是工程硕士吧?地大每年都有收比较多的人数,而且毕业难度不大。有地质工程,土木工程,岩土工程,工程管理。这是中国地质大学(武汉)工程学院的网址,里面有专门的工程硕士
中国地质大学(北京)能源学院创建于1952年建校之初,历经矿产地质及勘探系、可燃矿产地质及勘探系、能源地质系、能源学院等演变,由石油天然气地质及勘探、煤田地质及勘探二个专业发展而来。在能源学院的建设历程中,曾经涌现了一批享有盛誉的专家学者,如提出“陆相生油”理论的中国石油地质专业主要创始人潘钟祥教授、我国第一个煤田地质专业的创建者杨起院士等。在半个多世纪的发展中,能源学院积极开展高素质、有特色的人才培养,逐渐形成了重视地质理论基础、强化实际动手能力的人才培养特色,为中国能源工业培养和输送了大批品学兼优的科技人才和管理骨干,由能源学院培养的三名中国科学院院士傅家谟、殷鸿福、张彭熹是其中的杰出代表。
能源学院目前由石油地质、石油工程、能源与环境三个教研室组成,有教职员工50人,包括中国科学院院士1人、教授15人(博导13人)、副教授(高级工程师)14人,另有退休后返聘的教授(博导)6人和兼职教授4人。在人才队伍中,中青年教师是教学与科研的中坚力量,他们多数拥有博士学位并曾在美国、英国、加拿大、德国、荷兰等科学技术先进的国家留学或进修过,有获全国青年地质科技银锤奖2人,教育部“优秀青年教师奖”1人,北京市优秀青年教师2人,进入原地质矿产部跨世纪人才的1人。
在学科结构上,能源学院设有“矿产普查与勘探学”博士后流动站、“矿产普查与勘探”、“油气田开发工程”及“能源地质工程”三个二级学科的博士学位和硕士学位授予点、“油气井工程”硕士学位授予点,在“石油与天然气工程”领域招收工程硕士研究生,在“石油工程”和“勘查工程”二个专业招收本科生。其中,“矿产普查与勘探”和“油气田开发工程”分别为国家重点学科和省级重点学科,“勘探工程”为国家重点专业,勘查工程专业(油气地质方向)被确定为我校工科教学基地。学院每年招收博士研究生100余名、硕士研究生70余名、工程硕士研究生100余名、本科生180余名,现有各类学生1208名,研究生与本科生的比例接近1:1。
能源学院拥有较雄厚的科研实力,不断追踪世界学科发展动态,立足于学科发展前缘。围绕着含油气盆地地质及勘探开发,形成了多个特色明显、处于领先地位的研究领域,如沉积学、层序地层学、含油气盆地分析、油气成藏动力学、储层地质学、有机地球化学、天然气地质学、油气田开发地质学、油气井动态分析、油藏工程、油藏数值模拟等。在长期的科研活动中,能源学院与中国石油、中国石化、中海油等集团公司及国土部等部门开展了广泛的合作,研究领域涉及到松辽盆地、渤海湾盆地、鄂尔多斯盆地、四川盆地、塔里木盆地、准噶尔盆地、柴达木盆地、二连盆地、东海海域、南海海域以及国外等含油气盆地。先后承担了国家重点科技攻关项目、国家攀登项目、国家重大基础研究3项目、国家自然科学基金重点项目和面上项目,以及横向合作项目120多项,2004年科研经费增长至1500万元。许多项目获得了国内领先和国际先进的评价,先后有17项科研成果获省部级奖励,出版专著11部,发表论文440多篇,其中,进入SCI、EI及ISIP三大检索系的论文40多篇。
能源学院实验室建设快步发展,仪器设备性能优良,实验教学条件良好。下设能源基础室、有机地化室、沉积岩石学室、油气田开发室、油层物理室、数值模拟室和能源信息分析室。
能源学院依托国有大型石油企业和科研院所(胜利油田、辽河油田、中原油田、大庆油田、中石油勘探开发研究院廊坊,通过多年的建设与完善,建成了多个具有多层次(本科、硕士、博士和工程硕士)、多功能(本科生产实习、研究生论文基地、工程硕士办学点和教师科研基地)特色的“产-学-研实习基地”。
另外,我院勘查工程专业(油气地质方向)已被确定为我校工科教学基地。
能源学院一直奉行以科研促教学的办学思想,提出了“科研成果进课堂,科研参与促成长,科研经费助教学,科研协作搭桥梁”的科研促教学办学模式。在长期的教学实践中,积极开展高素质、有特色的人才培养,形成了重视地质理论基础、重视实际动手能力、重视创新意识的人才培养特色,着力打造具有地质大学特色的实践教学模式。学生传统就业率多年来一直居全校之首。
新世纪的能源学院正以高昂的姿态、百倍的信心阔步前进。
科研方向
层序地层学
层序地层学虽属于现代地层学的范畴,但从学科所依据的理论基础和研究内容来看,已远远超过了地层学所涉及的范畴。层序地层学将年代地层学与现代沉积学、全球海平面升降结合起来, 通过等时地层格架的建立,在时间地层单元内进行地层充填结构和展布样式的研究,在盆地油气勘探和开发领域,包括盆地沉积演化史分析、地层与储层预测、隐蔽油气藏的勘探、及至油气藏描述等方面,均取得了成功。因而层序地层学不仅变革了传统地层学和沉积学的理论,而且已成为一门能够指导油气勘探的应用科学。在石油和天然气工业强大生产力的推动下层序地层学作为地层学的新的分支学科正在不断发展、完善。
我院层序地层学研究方面实力雄厚,拥有一批国内外知名的专家、教授,在国内外多个盆地和地区的研究中取得了丰硕成果。目前主要研究领域有:层序地层与隐蔽圈闭预测研究、陆相断陷湖盆层序地层研究、河流相层序地层研究、前陆盆地层序地层研究、高分辨率层序地层在油藏描述中的应用等。
沉积学与油气储层
沉积学是对沉积物的来源、沉积岩的描述和分类以及沉积物形成过程进行研究的学科,其研究内容广泛,包括沉积岩、沉积环境、沉积相、沉积过程及沉积矿产等多个方面。沉积相的研究贯穿于油气勘探开发的全过程,主要研究烃源岩、储集层和盖层的沉积条件及有利相带分布、以及地层、岩性圈闭形成条件的分析。油气储层研究是利用地质、地震、测并、试井等资料和各种储层测试手段,以沉积学原理为指导,研究和解释油气储集体所形成的沉积环境、成岩作用及其形成机制,分析与确定储层的地质信息及不同层次的非均质性特征.提高油气勘探与开发效果。
该研究方向为我院的传统优势学科之一,研究实力雄厚,目前主要研究领域有:沉积相与油气、油气储层综合预测、储层成岩作用、油气储层表征与建模等。
油气地球化学与油气成藏
油气地球化学与油气成藏主要研究油气的成因、运移、聚集、演化和分布规律。油气地球化学主要研究油气的成因,包括有机质丰度、类型、油源对比等;油气成藏主要研究油气成藏条件、成藏作用、成藏过程及成藏动力学系统等。
该研究方向为我院的传统优势学科之一,研究实力雄厚。目前主要研究领域有成藏动力学系统与含油气系统、油气运移、油气地球化学、油藏及开发地球化学、根缘气及天然气成藏序列等。
含油气盆地分析
盆地分析是地质学中多学科交叉的重要学科领域,它围绕着沉积盆地的形成、演化、沉积充填、后期改造及矿产分布规律等问题开展综合研究。含油气盆地分析注重研究盆地的形成、演化、改造过程以及它们与油气分布、油气成藏作用的关系,主要内容包括含油气盆地构造学分析、地层学与沉积学分析、沉降史和热史分析、石油地质学分析等。
该研究方向为我院的传统优势学科之一,研究实力雄厚。
石油构造分析
石油构造分析是构造地质学与石油地质学相结合的产物,包括石油构造分析的理论基础、石油构造分析的实例以及与油气形成和分布有关的构造作用、构造样式及构造规律性等。其主要研究对象是含油气盆地内的构造作用和构造样式,不仅要研究含油气区大地构造、区域构造和盆地构造分析,而且还要研究盆地内各次级构造单元(坳陷、隆起、凹陷、凸起、二级构造带(油气聚集带)、油气构造圈闭)的石油构造地质条件。
该研究方向为我院的传统优势学科之一,研究实力雄厚。
煤层气地质与开发工程
在煤层气生成、聚散及成藏的地质过程分析、煤层气生储过程演化与成藏配置关系、煤储层物性及其控制机理、煤储层气-水两相渗流机制、煤层气驱动运移机制、气-固-流耦合作用对煤层气产出的影响以及煤储层伤害等方面开展了卓有成效的研究,构建了煤层气吸附-解吸-扩散-渗流的地质模型。以煤层气富集性与可性为切入点,探讨煤层气有利区块的判识标准,建立符合煤层气地质特点和产业发展要求的评价体系,通过煤层气地质调查圈定有利区带并作出准确地质评价。开展注气提高煤层甲烷收率和在深部煤层中进行CO2埋存等方面的相关研究。
能源利用与环境工程
包括洁净能源研究、含能源盆地分析与计算机模拟、环境地球化学与环境保护、应用有机地球化学等。
洁净能源研究:研究洁净能源的天然产出与人工洁净化方法,能源利用对环境的影响及其对策。含能源盆地分析与计算机模拟:结合地质学的方法和现代计算机的模拟技术分析盆地的形成、演化和煤油气的聚集规律。环境地球化学与环境保护:用环境地球化学的理论和方法研究影响现代环境的各种地质因素和与之相关的人为因素及其对策。应用有机地球化学:用有机地球化学的理论和分析测试技术研究黑色页岩及其伴生矿产(包括部分贵金属矿产和煤油气)的形成、演化和富集规律。
油气田开发理论与方法
主要包括二次油方法、提高收率理论与方法、油气井动态分析、调剖堵水方法、压裂酸化优化设计、井网优化等研究方向。
我校在油气藏开发工程方面取得了一些有特色的结果,承担3项目及省部级重点科技攻关项目,与国内大油气田有广泛合作。
油气开工程
油气开工程理论与技术是综合运用数学、固体力学、流体力学、渗流力学、物理、化学、地质、热力学、电子、机械、生物等理论和技术,经济、快速、安全、有效地开石油天然气的一个理论与技术相结合的学科方向。
近年来,水平技术、大位移井技术、化学提高油率技术、生物油技术、物理油技术、稠油热技术、煤层气开技术、连续油管技术的出现和发展,使得油气工程理论与技术成为理论研究活跃、应用前景广泛、经济效益巨大的一门科学。
该研究方向主要研究油气工艺、油机械、修井、测井,增产措施等,是油气田开发的最重要环节。
油气藏工程
油气藏工程是油田科学开发的基础,是油田开发过程中至始至终都需要深入研究的课题。主要研究的内容包括油气井的产能评价、油气藏的开发井网设计、油气藏的动态分析与动态预测、合理井网调整与加密、剩余油分布预测等,油气藏工程理论研究与应用是我院的特色和强项之一,目前与全国各大油田都有业务联系。
油气渗流理论与应用
油气渗流力学是整个油气田开发工程的基础,它源于十九世纪五十年代法国的水力学,兴于二十世纪三十年代,盛于二十世纪中叶,目前发展有所减缓。矿场工程师们利用渗流力学理论和方法,探索油气开发过程中发生的油、气、水等地下流体流动所遵循的规律,制定正确的油气田开发方案和开发调整方案、评价油气储层、分析区块开发动态、有效地控制和调整开发过程。现代油气田开发越来越注重科学地认识和改造油气藏,尊重客观规律,以最低成本获得最多的油气,渗流力学是认识油气藏、高效开发油气藏以及改造油气藏的科学基础和重要工具。我院教师在非线性渗流、煤层气渗流、水平井渗流、垂直裂缝井渗流和气体渗流以及相应的工程应用方法研究亦取得了一些有特色的结果。目前的研究方向有:
(1)多相流体渗流研究
以岩心流动实验为基础,油藏地质建模和油藏数值模拟相结合,进一步探索多相流体渗流规律,精细描述开发中后期油层渗流场特征;
(2)压力敏感介质渗流研究
以高温高压油气田开发为背景,通过室内实验研究开发过程中由于压力变化而导致的储层敏感效应,研究孔隙度、渗透率等储层物性参数变化规律,通过数学建模研究储层压力敏感效应对可储量的影响;
(3)低渗透介质渗流研究
通过室内实验研究油气在低渗透介质中的渗流规律,并结合油气井压裂、酸化、打水平井等增产措施,研究垂直裂缝井、水平井多维渗流问题,形成垂直裂缝井、水平井不稳定压力分析系列方法;
(4)煤层气渗流研究
根据煤层气开特点,研究多重介质中有吸附和解吸发生的煤层气不稳定渗流问题,给出煤层气开动态分析和预测方法;
(5)非牛顿流体渗流研究
研究聚合物、完井液、堵水剂等非牛顿流体在地层中的渗流行为,分析储层损害、堵水效果等。
储层建模与数值模拟
我校在此领域内有着突出的优势,在与国内主要油田的合作研究中,形成了以岩心、测井和地震多资料相结合的、以储层精细划分与对比为基础的、以建立油藏地质模型为核心的理论体系与技术体系,并在生产实践中取得了良好的成效。以岩心、测井、三维地震资料为基础,运用高分辨率层序地层学的理论与技术,建立精细等时地层对比格架及油气田开发的地质模型。在精细、等时的地层单元内开展储层,隔层预测与评价研究,能大大提高地层预测的准确性,为油田开发中注、井布署提供科学依据,为流体流动最佳数值模拟提供岩石物理模型。
油藏模拟是油藏管理内容的一部分,其目的是针对某一油藏,以最小的资本投入和操作费用获得最大的油气收率。油田管理研究的主要目的是确定从油藏现状出发,以最小的投入获取最大收率所需要的最佳技术。而油藏模拟是获得这一目标最高级的方法。
现代油藏经营管理
油藏经营管理是油藏区块作为对象,根据开发的各个不同阶段,以油藏管理部门为核心,组织物探、地质、油藏工程、油工艺、地面建设、经济分析等人员成立项目小组,确定分工与合作,共同协调管理。是以确定的目标情况下,各部分协同完成目标,达到获取最大经济效益,达到科学开发油气田的目的,现代油藏经营管理在我国的研究才起步,目前还不能完成照搬国外的模式,需要结合我国的国情进行现代油藏经理模式的研究。
师资队伍
能源学院现有中科院院士1名
杨 起
能源学院在职教授(排名不分先后顺序)
樊太亮(博导)、邓宏文(博导)、李治平(博导)、侯读杰(博导)、汤达祯(博导)、
李宝芳(博导)、林畅松(博导)、陈开远(博导)、姜在兴(博导)、于兴河(博导)、
刘大锰(博导)、黄海平(教授)、黄文辉(教授)、肖建新(教授)、唐书恒(教授)、
张金川(教授)、何登发(教授)、郭少斌(教授)、王晓冬(教授)
能源学院现有副教授(排名不分先后顺序)
陈昭年、陈 程、王红亮、毛小平、刘景彦、陈永进、丁文龙、刘鹏程、王宏语、李胜利
地大能源学院网站:上面有任何一个导师的****。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。