1.奥陶系风化壳产层天然气的来源分析

2.西安石油大学石油与天然气工程学科研究生培养方案

3.LBM方法应用于天然气水合物沉积物中水合物分解过程的多相渗流规律研究

天然气课程设计报告_天然气动态分析课程总结最新

年度工作总结

时光如梭,岁月如流,转眼间,公司天然气长输管道自主运行已一年半了,在公司各级领导的正确部署和大力支持下,2013年我部门及所辖各站场团结协作、上下一致、努力拼搏,始终坚持把确保长呼线、长呼复线的“安全、稳定、连续”运行放在首位,认真履行和完成公司及地方监管部门的各项要求,狠抓落实、强化监督管理;部门内部各岗位相互协作、有机结合,较好的完成了各项工作任务和既定的工作目标。为公司长距离输气管道的安全、平稳、高效运行打下了坚实的基础。现将本年度工作总结如下:

一、安全管理

(一)、场站安全管理

1、落实安全监督、加强安全教育

为了确保安全稳定运行,我部门严格按照公司各项规章制度及考核细则对所辖场站进行监督、考核,全年组织全面考核20余次,日常检查平均每周一次,对检查的发现问题进行分类处理,需场站完成整改的运行部以隐患整改单的形式下发给场站要求场站限期整改并回复,需运行部完成整改的运行部安排相关工作人员争取在最短的时间内完成整改,部门无法独立完成整改的,形成书面材料上报公司各相关部门请求协助处理。

安全教育方面,我部门每月取实地演练和桌面演练等多种形式组织下属场站开展消防及管道安全应急演练,演练完毕后进行分析并形成书面总结,并留影像资料存档。对新入职员工,进行细致、严格的入职教育,同时督促场站也进行相关教育并严格要求。

下一步,我部门将进一步加强对场站的监督、考核工作,做到考核常态化,达到“以考促学、规范管理、共同进步”的目的,进一步夯实场站安全管理工作的基础。

2、团结协作,紧密配合

按照公司相关制度要求,同时为了能更及时、准确的掌握各场站工作及管道运行动态,我部门除了不间断到各场站进行了解情况外,所辖各场站每天按时以书面形式向部门相关岗位人员汇报场站生产运行动态,部门相关工作人员审核后汇总上报公司调度中心,形成上下互通,紧密配合的工作态势。另外我部门每月按时组织各站站长、负责人召开月度工作例会,总结当月工作,、安排下月工作,并形成会议纪要下发到各场站要求各站所有员工认真领会落实,使部门工作有、有安排、

3、责任到人、严格落实

为加强部门安全管理,落实安全管理责任,强化各场站主管的安全意识和法制责任观念,有效控制、预防或减少安全事故的发生,保障管道安全稳定运行,我部门就安全、外线、设备等领域分别与部门相关岗位负责人、所辖场站站长、负责人及场站具体岗位负责人进行层层签订了一系列安全生产责任状,具体岗位承担具体责任,把责任落实到人,严格要求,对于各类违纪、违规、违章现象做到人见人管,形成一个群防群治,维护的安全管理格局。

(二)、外线安全管理

1、落实责任,提升素质

我部门在上一年制定执行的《分段管理制度》的基础上,认真落实,外线巡检人员每人各负责一段管线,将责任落实到个人。巡检人员在日常外出巡查管线的同时,认真处理对待了对各自管辖内发生的各类事务,并全力处理了存在的问题。

2、严格管理协管员日常巡护工作,监督落实了巡护到位

部门每位成员对所辖管段的协管员根据《天然气管道外聘协管员管理办法》进行严格的考核、管理,监督协管员的日常巡护工作。对于重点隐患区域,管段负责人在巡检不到的情况下每天与协管员进行电话沟通,及时掌握隐患点的最新动态。部门根据协管员汇报情况、巡护情况每月与场站工作人员共同对协管员进行考核,每月统计工资,在每季度末按时与场站工作人员一起将工资发放到每位协管员的手中。对于不按时汇报、管道巡护不积极的进行及时调整、更换。

3、做好日常巡检工作,认真完成了各项任务

自主运行以来,我部门设置了专门针对外线安全的外线巡检岗位,共5人,庆铃皮卡车2辆,全年不间断对管道沿线的所有施工点、隐患点、阀室、三桩等进行了细致检查。并每天对当天的巡检情况进行进行总结,每周由部门专人进行汇总整理,每月进行分析统计,并编制出相应的周报、月报,认真完成了外线安全管理各项工作任务,为管道安全运行奠定了坚实基础。

4、大力开展安全宣传活动,积极营造安全宣传氛围

外线日常巡护中,对管道途经地段部门、村镇、单位及居民的进行安全知识的宣传,在管道沿线发放了大量的《石油天然气管道保护法》、《鄂尔多斯市天然气管道安全管理暂行办法》以及相关宣传物品,积极做好了安全宣传工作。

在安全宣传月(6月份)期间,与管道沿线各市、旗(县)共同开展了安全宣传活动,出动安全生产宣传车一辆,大力宣传管道安全,受到沿线群众居民的热烈欢迎,进而在管道沿线营造出了良好的安全宣传氛围。

通过日常宣传与“安全生产月”等一系列的安全宣传活动,强化了管道沿线居民对于保护天然气管道的安全责任意识,提高了安全素质。今后我部门继续坚持“安全第一、预防为主、综合治理”的安全方针,确保天然气管道安全、平稳运行,为自治区中西部地区的工业与居民用气保驾护航。

5、认真做好施工监督,严防安全事故的发生

我部门在日常巡护工作中,细致检查了沿线的每一处施工点,对在管道附近准备开始的各类施工提前进行现场告知,并与之签订《管道安全保护协议》,同时要求施工方尽快办理相关施工及备案手续,做好了管道的安全防护工作。冬季停工期间,外线巡检人员对每一处隐患进行现场录音、录像并详细注明现场情况,进行存档。同时,与所有隐患业主签订2014年安全保护协议,现已全部录制、签订完毕。

6、开展隐患排查工作,努力解除安全隐患

我部门根据每月做出的《隐患统计图表》,开展了隐患排查治理工作。在排查工作中,各小组细致检查管道沿线的每一处隐患,努力将隐患逐项整改。

7、与上级主管、监管部门积极沟通、紧密配合

与管道途经部门,我部门主动沟通交流,努力强化部门对管道保护工作的支持力度。在公司内部,自从长呼、长乌临自主运行及长呼复线的顺利投产后,加强了与场站的沟通协调,强化了与场站的工作联动性,对所辖各场站严格要求,通过日常检查、考核等多种形式加强对场站的角度管理。

认真对待各级安监局及相关监管部门的各项日常检查,在检查中认真讲解管道现状及存在的问题,对各类检查进行全程陪同,对检查提出的意见及时上报并整改。

二、设备管理

1、加强学习、掌握技能

为了进一步掌握设备操作、故障排除等各项技能,我部门以驻站学习、现场讲解等形式组织了多次学习,在本年度初,组织部门员工轮流到场站进行学习,2人一组,为期15天,共用时近3个月,并要求所有员工在下站学习期间对每天的学习进行梳理,写学习心得,学习完毕后对半个月的学习进行书面总结。另外,我部门工作人员抓住每一次到各场站巡查及处理其他工作时,遇到不懂得、不会的问题及时与场站工作人员进行沟通,起到了相互学习、共同促进的积极作用。

2、及时维护、排除隐患

我部门设备管理岗位设2人,在日常对场站的设备检查之余,跟随场站设备管理人员及站长积极学习各类设备设施的操作技能及运行原理,在一年的相互学习下,部门员工对场站的各类工艺设备的各方面的认识已达到了一个全新的高度,相信在不久的将来,我部门在设备管理工作方面会有更大的进步。

3、建立、完善设备资料

设备管理是运行部重要工作之一,本年度,我部门在上一年设备管理工作的基础上,由设备管理岗位工作人员对设备的各类台账进行进一步完善,对各场站的仪器仪表、设备设施、工具器具等各类设备分别统计汇总存档管理台账,建立了设备统计、设备检定、物资统计台账、工器具统计等一系列台账,并详细列出规格、型号、检定情况、运行状态等明细资料,每月更新。对存在隐患的设备按月进行统计,并与每月25日前完成《设备隐患统计表》的统计工作,设备管理人员按照设备隐患表内所列隐患有针对性的会同场站人员共同进行排除。

4、按时校验、保障运行

为了确保在用的各类设备设施工作状态安全、稳定,我部门对所辖场站、阀室的仪器仪表、防雷接地、消防器材等各类设备设施全部完成了检定工作,具体包括场站压力容器、压力表、安全阀、压力变送器、温度变送器、温度表、场站、阀室防雷防静电保护、消防设施等。本年度,我部门分别在5-6月份和11-12月份对上述设备设施进行了分批检测,满足场站正常运行需求和监管部门的要求,为长呼线、长呼复线的稳定运行奠定了基础。

三、综合管理

1、部门档案管理工作

对部门内部的各类档案进行分类存档保管,完善档案管理工作,对本年度上传下达的调度管理、安全管理、综合管理、工程、运行等各类文件、资料定期整理归纳,并以纸质版、电子版等形式分别进行了存档,并按时更新,确保各类资料的可用性。同时,组织编写每周工作汇报、每月工作汇报,每月外线隐患统计分析、设备隐患统计分析,对公司各机关部门下达的各项指令及时接受、领会并通知所辖各场站。对场站上报的各项工作报告及时以书面形式上报公司相关部门。在基层和机关之间传达指令、上报工作情况,使公司及时、准确掌握基层动态,基层及时了解机关最新部署及工作要求。

2、积极参加培训学习,不断提高安全管理水平

我部门认真、积极参加了公司内部及各单位组织的的培训学习活动,对每一次的培训学习进行了认真记录。同时,在部门内部每月组织应急演练,讨论学习各类相关案例,加强了部门所有员工的专业知识水平。积极动员部门及所辖场站员工参加公司组织的各类活动,如:“技术比武”、“管道安全在我心”征文活动、优秀文艺作品评选等各类活动,积极向公司的号召靠拢,加强了员工积极向上的工作心态和归属感的培养。

在过往的一年中,我部门在外线安全管理、场站管理等方面做了大量的工作,通过全体员工的共同努力,保证了部门各项工作的顺利开展,取得一定的成效。但是,安全工作任重而道远,只有出发点没有终点,我们深深的意识到,在目前工作的基础上还有很多需要发掘、需要研究的地方,在以后的工作中我们一定会充分发挥团队合作精神,群策群力,紧紧围绕“安全第一,预防为主,综合治理”的安全工作方针和“安全发展,科学发展”的先进理念更进一步强化管理运行二部各项工作,提升部门业务处理能力,努力开创基层安全管理工作新局面,确保输气管道的安全、平稳、高效运行。

奥陶系风化壳产层天然气的来源分析

评价参数直接影响评价方法的有效性,不同类型的参数作用不同。有效烃源岩有机碳下限、产烃率图版、运聚系数是成因法的关键参数;最小油气田规模对统计法计算结果有较大影响;油气丰度是应用类比法的依据,由已知区带的油气丰度评价未知区带的丰度;可系数是将地质量转化成可量的关键参数。

(一)刻度区解剖

1.刻度区的定义

刻度区解剖是本次评价的特色之一,也是油气评价的重要组成部分。刻度区解剖的目的是通过对地质条件和潜力认识较清楚的地区的分析,总结地质条件与潜力的关系,建立两者之间的参数纽带,进而为潜力的类析提供参照依据。

刻度区是为取准评价关键参数,以保证评价的客观性而选择的满足“勘探程度高、探明率高、地质认识程度高”三高要求的三维地质单元。刻度区可以是一个盆地(凹陷)、一个油气运聚单元、一个区带、一个成藏组合、一个层系或一个二级构造带等。为了正确和客观认识地质条件和潜力,刻度区的选取在考虑“三高”条件的基础上,应尽量考虑不同地质类型的综合,这样可以更充分体现油气丰度与地质因素之间的关系。

2.刻度区解剖内容与方法

刻度区解剖主要围绕油气成藏条件、量及参数三个核心展开,剖析三者之间的关联规律和定量关系。

(1)成藏特征和成藏主控因素分析。成藏特征和成藏主控因素分析实质上是对选择的刻度区进行成藏特征总结,精细刻画出成藏的定性、定量的主控因素与参数,便于评价区确定类比对象。在一个含油气盆地、含油气系统、坳陷、凹陷的成藏规律刻画中,其成藏特征差异大,故一般最好选择以含油气系统(或坳陷)及其间的运聚单元作为对象,更便于有效的类比应用。油气运聚单元是盆地(凹陷)中具有相似油气聚集特征的独立的和完整的石油地质系统,是以盆地(凹陷)的油气聚集带为核心,并包含为该油气聚集带提供油气源的有效烃源岩。油气运聚单元是有效烃源岩、油气运移通道、有效储集层、有效盖层、有效的圈闭等要素在时间和空间上的有机组合。一个油气运聚单元可以有多个有效烃源岩体和烃源岩区为其供烃,但同一个油气运聚单元的油气聚集特征是相似的。一个油气运聚单元可以只包含一个油气成藏组合,也可以包含在纵向上叠置的多个油气成藏组合。因此刻度区地质条件的评价与定量刻画就是按照运聚单元→成藏组合→油气藏的层次路线综合分析烃源条件、储层条件、圈闭条件、保存条件以及配套条件等油气成藏条件。盆地模拟是地质评价流程中的一个重要组成部分,其作用主要体现在三个方面:其一是通过盆地模拟反映流体势特征,进而确定油气运聚单元的边界;其二是提供烃源参数,如生烃强度、生烃量、有效烃源岩面积等;其三是通过关键时刻的获取来反映油气成藏的动态作用过程。

(2)油气量确定。刻度区量计算与一般意义上的量计算稍有不同,正是由于刻度区的“三高”背景,特别是选定的刻度区探明程度越高越好,计算出的量更准确有利于求准各类评价参数。在本次刻度区解剖研究中,主要用了统计法来计算刻度区的量,统计法中包括油藏规模序列法、油藏发现序列法、年发现率法、探井发现率法、进尺发现率法以及老油田储量增长法,不同方法估算出的量用特尔菲加权综合。盆地模拟在计算生烃量方面技术已经比较成熟,因此刻度区(运聚单元)的生烃量仍由盆地模拟方法计算。

(3)油气参数研究。通过刻度区解剖,建立了参数评价体系和预测模型,获得了地质条件定量描述参数、量计算参数和经济评价参数,如运聚系数、丰度等关键参数。从刻度区获得的量与生油量之比可计算出运聚系数,刻度区的量与面积之比可获得单位面积的丰度,还可得到其他参数等。由于盆地内坳陷(凹陷)内各单元成藏条件差异,求得的参数是不同的,故细分若干运聚单元,求取不同单元的参数,这样用于类比区会更符合实际。

3.刻度区研究成果与应用

通过刻度区解剖研究,系统地获得运聚系数、油气丰度等多项关键参数,为油气评价提供各类评价单元类比参数选取的标准,保证评价结果科学合理。如中国石油解剖的辽河坳陷大民屯凹陷级刻度区,通过对其烃源条件、储层条件、圈闭条件、保存条件以及配套条件五方面精细研究,获得了22项量化的成藏条件的系统参数。根据大民屯凹陷内划分的六个运聚单元,分别计算各单元的生油量和量,直接获得六个单元的运聚系数。同时计算出各运聚单元单位面积的量,获得不同成藏条件下的丰度参数(表4-5)。

表4-5 大民屯凹陷刻度区解剖参数汇总表

在中国石油128个刻度区的基础上,各单位根据评价需要,又解剖了一定数量的刻度区。其中,中国石油利用已有刻度区128个,新解剖刻度区4个,共应用132个;中石化新解剖42个;中海油新解剖4个;延长油矿新解剖3个。各项目共应用了181刻度区,这些刻度区涵盖了我国主要含油气盆地中的大部分不同类型的坳陷、凹陷、运聚单元和区带,基本满足了不同评价区的需要。各种类型刻度区统计见表4-6。

表4-6 各种类型刻度区统计表

(二)有效烃源岩有机碳下限

有效烃源岩有机碳下限是指烃源岩中有机碳含量的最小值,小于该值的烃源岩生成的烃量不能形成有规模的油气聚集。有效烃源岩有机碳下限是确定烃源岩体积的主要参数,直接影响生烃量的计算结果。

在大量烃源岩样品分析化验和有关地质资料研究基础上,明确了不同岩类有效烃源岩有机碳下限标准。陆相泥岩有效烃源岩有机碳下限为0.8%,海相泥岩为0.5%,碳酸盐岩为0.2%~0.5%,煤系源岩为1.5%。例如,陆相泥岩TO C与S1+S2关系表明,S1+S2在TO C为0.8%时出现拐点,有效烃源岩有机碳下限定为0.8%;碳酸盐岩气源岩残余吸附气量与有机碳关系表明,残余吸附气量在有机碳为0.2%处出现拐点,有效烃源岩有机碳下限定为0.2%(图4-1、图4-2)。

图4-1 陆相泥岩TOC与S1+S2关系图

图4-2 碳酸盐岩气源岩残余吸附气量与有机碳关系图

对于勘探实践中已经发现油气藏,但烃源岩有机碳含量未达统一下限的盆地,根据实际情况可进行适当调整。如柴达木盆地柴西地区,在分析了大量烃源岩有机碳和S1+S2指标资料后,明确该区有机碳含量下限为0.4%时,即达到有效烃源岩标准,并被发现亿吨级尕斯库勒大油田的勘探实践所证实。在渤海湾盆地评价过程中,建立起相对统一的有效烃源岩丰度取值下限标准:碳酸盐岩气源岩丰度下限取0.2%,碳酸盐岩油源岩丰度下限取0.5%,湖相泥岩丰度下限取1.0%。

有效烃源岩有机碳下限的基本统一,保证了生烃量计算标准的相对一致和全国范围内的可比。

(三)产烃率图版

烃源岩产烃率图版是用盆地模拟方法计算烃源岩生烃量和量的关键参数。产烃率图版一般用烃源岩热模拟实验方法获得。

1.液态烃产率图版

利用密闭容器加水热模拟实验方法,对中国陆相盆地不同类型烃源岩进行了热模拟实验。模拟实验所用样品取自松辽、渤海湾等10个盆地,包括侏罗系、白垩系和古近系的湖相泥岩、煤系泥岩和煤3大类烃源岩。其中湖相泥岩烃源岩的有机质类型包括Ⅰ型、Ⅱ1型、Ⅱ2型和Ⅲ型,煤系泥岩烃源岩的有机质类型包括Ⅱ2型和Ⅲ型,煤烃源岩的有机质包括Ⅱ1型、Ⅱ2型和Ⅲ型。根据模拟实验结果,编制了不同类型烃源岩的液态烃产率图版(图4-3、图4-4、图4-5)。

图4-3 湖相泥岩烃源岩液态烃产率图版

图4-4 煤系泥岩烃源岩液态烃产率图版

图4-5 煤烃源岩液态烃产率图版

2.产气率图版

由于生物气生气机制与干酪根成气和原油热裂解气的生气机制不同,因此,其产气率与干酪根和原油裂解气产气率求取方式不同。

(1)生物气产气率。对生物气源岩样品在25℃~75℃的条件下进行细菌培养产生生物气,由此得到不同温阶下各类有机质的生物气产率。在模拟实验结果的基础上,结合前人的研究结果,分别建立了淡水环境、滨海环境和盐湖环境中不同类型有机质的生物气产气率图版及演化模式。

(2)干酪根和原油裂解气产气率。对于不同类型气源岩油产气率,国内外学者及一、二轮评价中已做过大量的工作。较多的实验是应用热压模拟方法对各种类型烃源岩进行产油及产气率实验,这种方法所计算的产气率包括了原油全部裂解成气的产率,亦即常说的封闭体系下源岩的产气率,所得到的天然气产率是气源岩的最大产气率。另一种求取气源岩产气率的方法是在开放体系下对源岩进行热模拟实验,各阶段生成的天然气和原油均全部排出源岩,原油不能在源岩中进一步裂解为天然气。这两种情况都是地质中的极端情况。但是实际的地质条件大多是半开放体系,在这种情况下,源岩生成的油既不能全部排出烃源岩,也不能完全滞留于源岩中。不同地质条件下亦即开放程度不同情况下源岩产气率如何计算?具体方法为:求得封闭和开放体系下相同类型源岩的产气率,将上述两种体系下的产气率图版(中值曲线)输入盆地模拟软件中,得出烃源岩层在不同渗透条件下产气率图版。

(四)运聚系数

运聚系数是油气聚集量占生烃量的比例,是成因法计算量的一个关键参数,直接影响量计算结果。运聚系数的确定方法包括运聚系数模型建立法和运聚单元成藏条件分析法。

1.运聚系数模型建立法

通过刻度区解剖,确定影响运聚系数的主要地质因素及其与运聚系数的相关关系。刻度区解剖研究表明,烃源岩的年龄、成熟度、上覆地层区域不整合的个数和运聚单元的圈闭面积系数等地质因素与石油运聚系数之间存在相关关系。依此建立地质因素与石油运聚系数之间关系的统计模型,包括双因素模型和多因素模型。双因素模型(相关系数为0.922)的地质因素选用烃源岩年龄和圈闭面积系数:

lny=1.62-0.0032x1+0.01696x4

多因素模型(相关系数为0.934)的地质因素选用烃源岩年龄、烃源岩的成熟度、区域不整合个数和圈闭面积系数:

lny=1.487-0.00318x1+0.186x2-0.112x3+0.02118x4

式中:y——运聚单元的石油运聚系数,%;

x1——烃源岩年龄,Ma;

x2——烃源岩成熟度(Ro),%;

x3——不整合面个数;

x4——圈闭面积系数,%。

2.运聚单元成藏条件分析法

依据刻度区提供的大量运聚系数,依盆地类型和影响运聚系数的主要地质因素,分类建立运聚系数取值标准与应用条件。在评价中,根据刻度区解剖结果,确定了油气运聚系数分级取值标准(表4-7)。在评价中得到了推广应用,取得了良好的效果。

表4-7 石油运聚系数分级评价表

(五)最小油气田规模

最小油气田规模是指在现有工艺技术和经济条件下开地下,当预测达到盈亏平衡点时的油气田可储量。最小油气田规模对统计法计算的量结果有较大影响。为此,中国石油天然气集团公司等三大石油公司和延长油矿管理局对最小油田规模进行了专门研究。

通过对不同油价、不同开发方式和未来可能技术条件下最小油气田规模研究,确定了不同地区的最小油气田规模的取值。在地理环境相对较好的东部地区,其勘探开发成本较低,最小油气田规模一般在10×104~30×104t,在地理环境相对较差的西部地区,其勘探开发成本高,最小油气田规模一般在50×104t以上,对于海域来说,油气勘探开发成本更高,最小油气田规模更大,一般在150×104~500×104t。

(六)丰度

油气丰度是指每平方公里内的油气量,是类比法计算量的关键参数。通过统计分析,建立了丰度模型和取值标准。

1.丰度模型

通过刻度区解剖,建立刻度区内评价单元油气丰度和相关地质要素之间的统计预测模型:

新一轮全国油气评价

式中:y——运聚单元的石油丰度,104t/km2;

x1——烃源岩生烃强度,104t/km2;

x2——储集层厚度/沉积岩厚度,小数;

x3——圈闭面积系数,%;

x4——不整合面个数。

2.丰度取值标准

通过统计不同含油气单元丰度的分布特点,结合地质成藏条件,总结出各类刻度区丰度的取值标准。

(1)不同层系丰度:古近系凹陷由于成藏条件优越,成藏时间晚,石油地质丰度一般大于20×104t/km2;中生代凹陷成藏时间相对较长,石油地质丰度相对较低,一般约为10×104t/km2;古生代凹陷由于生、储层时代老,多期成藏多期改造、破坏,预计其丰度更低。

(2)不同类型运聚单元丰度:中新生代断陷或坳陷盆地长垣型、潜山型和断陷型中央背斜构造型,石油地质丰度高,一般大于40×104t/km2;中新生代裂陷盆地、坳陷盆地边缘构造型和古近系缓坡构造型石油丰度次之,一般为10×104~30×104t/km2;中生代盆地岩性型和古生代压陷盆地的构造型石油丰度相对较低,一般小于10×104t/km2。

(3)不同区块或区带级丰度:区块或区带级石油丰度差异更大,从小于1×104t/km2到大于200×104t/km2。其中潜山型、岩性—构造型、披覆背斜区块丰度较高,一般大于50×104t/km2,最大可大于200×104t/km2。构造—岩性型、断裂构造型丰度一般为30×104~50×104t/km2。地层—岩性型、断鼻型以及裂缝型区块、丰度较低,一般小于30×104t/km2。

通过刻度区解剖标定多种成藏因素下评价单元的丰度,不但为广泛应用类比法计算量提供了可靠的参数,同时也摆脱了过去以盆地总量为基础,利用地质评价系数类比将量分配到各评价单元的做法,使类比法预测的油气量在空间位置上更准确,提高了油气空间分布的预测水平。

(七)可系数

国外主要用建立在类比基础上的统计法计算油气可量,而我国第一轮、第二轮全国油气评价没有计算油气可量。本轮评价开展的油气可系数研究,通过可系数将地质量转化为可量,这在国内外油气评价中尚属首次。可系数是指地质中可出的量占地质量的比例,是从地质量计算可量的关键参数。

可系数研究与应用是常规油气评价的重要组成部分,主要目的是通过重点解剖、统计和类析方法,对我国油气可系数进行研究,为科学合理地计算油气可量提供依据,进而对重点盆地和全国油气可潜力进行评价。

1.评价单元类型划分

为使可系数研究成果与评价单元划分体系有机结合,遵循分类科学性、概括性和实用性三个基本原则,以油气类型、盆地类型、圈闭类型、储层岩性、储层物性等地质因素为依据,对评价单元进行了分析和分类,将国内石油评价单元分为中生代坳陷高渗、古近纪与新近纪断陷盆地复杂断块高渗等24种类型,天然气评价单元分为克拉通盆地古隆起、前陆盆地冲断带等16种类型(表4-8、表4-9)。

表4-8 不同类型评价单元石油可系数取值标准

表4-9 不同类型评价单元天然气可系数取值标准

2.刻度油气藏数据库的建立

已发现油气赋存在油气藏中,建立刻度油气藏数据库是统计已发现油气收率、分析影响收率主控因素、预测油气可系数的基础。刻度油气藏是油气可系数研究中作为类比标准的,地质认识清楚、开发程度高、已实施二次油或三次油技术的油气藏。

刻度油气藏选择原则:①典型性——能代表国内外主要的油气藏类型,保证类比法应用基础的广泛性;②针对性和实用性——针对油气评价,有效地指导相应类型评价单元油气可系数的确定;③开发程度高——油气藏开发程度高,地质参数和开发参数基本齐全;④三次油技术应用具有代表性——尽量选择已实施三次油技术的油藏,保证技术可系数的可靠性。

对国内43个油藏、30个气藏,国外59个油藏、22个气藏进行了剖析:收集整理每个油气藏的主要地质和开发参数;每个油气藏的地质条件主要包括储层特征、圈闭条件、流体性质等,开发条件主要包括开方式、开速度、增产措施等;研究不同因素对收率的影响程度,进而确定该油气藏收率的主控因素;针对开方式的不同,油藏的收率可分为一次、二次或三次收率;气藏主要是一次收率。通过对每个油气藏的地质条件、开发条件和收率进行分析,建立起国内外刻度油气藏数据库。

3.可系数主控因素分析

对影响可系数的地质条件、开发条件和经济条件进行了分析,建立起可系数主控因素的评价模型。

(1)在大量统计和重点解剖的基础上,对油气地质条件中的因素逐一进行分析,并提炼出15项油气收率的主控因素,即盆地类型、储层时代、圈闭类型、沉积相类型、储层岩性、储层厚度、储集空间类型、孔隙度、渗透率、埋深、含油饱和度、原油粘度、原油密度、变异系数、原始气油比。

(2)在诸多开发条件中,提高收率技术是极为重要的因素,不同提高收率技术适用条件不同,其提高收率的潜力也差距很大。通过综合分析,主要技术对不同类型油藏的提高收率潜力为:最小5%,中间值10%,最大值15%。

(3)利用石油公司提高收率模拟研究成果,建立了大型背斜油藏、复杂背斜油藏、断块油藏、岩性油藏、复杂储层油藏等在税后内部收益率为12%、油田开发到含水95%时聚合物驱和化学复合驱油时的油价与油田收率之间的关系,若这五类油藏要达到相同的收率,条件好的如大型背斜油藏、复杂背斜油藏所需的油价低于条件差的如岩性油藏、复杂储层油藏。

4.可系数取值标准的建立

在研究中,解剖了国内43个油藏、30个气藏,国外59个油藏、22个气藏,统计分析了大量油气田收率数据,给出了不同类型评价单元油气技术可系数和经济可系数取值范围,建立了不同类型评价单元油气可系数取值标准(表4-8、表4-9)。

(1)不同类型评价单元石油可系数相差较大,以技术可系数为例:中生代坳陷高渗和古近纪与新近纪断陷盆地复杂断块高渗评价单元可系数最大,其中间值大于40%;中生代坳陷中渗、古近纪与新近纪断陷盆地复杂断块中渗、中生代断陷、中新生代前陆、古生界潜山、古生界碎屑岩、古近纪残留型断陷、陆缘裂谷断陷古近纪与新近纪海相轻质油、陆缘弧后古近纪与新近纪海陆交互相轻质油等评价单元可系数为30%~40%;中生代坳陷低渗、古近纪与新近纪断陷盆地复杂断块低渗、古生界缝洞、南方古近纪与新近纪中小盆地、低渗碎屑岩、重(稠)油中高渗、变质岩、砾岩、陆内裂谷断陷新近纪重质油、陆内裂谷断陷古近纪复杂断块等评价单元可系数为20%~30%;低渗碳酸盐岩、重(稠)油低渗、火山岩等评价单元可系数为15%~20%。

(2)不同类型评价单元天然气可系数相差也较大:克拉通碳酸盐缝洞、礁滩和前陆冲断带等评价单元可系数最大,其平均值大于70%;克拉通古隆起、克拉通碎屑岩、前陆前渊、南方中小盆地、陆缘断陷、火山岩、变质岩和海域古近纪与新近纪砂岩等评价单元可系数为60%~70%;前陆斜坡、生物气、中生代坳陷、古近纪与新近纪断陷盆地复杂断块、残留断陷、砾岩等评价单元可系数为50%~60%;致密砂岩等评价单元可系数最小,其平均值小于50%。

5.可系数计算方法的建立

可系数计算方法包括可系数标准表法和刻度区类比法两种方法。

(1)标准表取值法。利用可系数标准表求取不同评价单元可系数的步骤如下:在不同类型评价单元可系数取值标准表中找到已知评价单元的所属类型;明确评价单元与可系数相关因素(宏观、微观)的定性、定量资料;对照可系数的类比评分标准表和类比评分计算方法,对评价单元进行类比打分;根据类比评价结果求取可系数。

(2)刻度区类比法。以建立的国内外刻度油气藏数据库为基础,利用刻度区类比法来求取不同评价单元的可系数。具体步骤如下:根据评价单元分类标准,将具体评价单元归类,并分析整理该评价单元的油气地质条件和开发条件;根据评价单元的类型及其地质条件和开发条件,从国内外刻度油气藏数据库选择适合的类比对象;对照可系数的类比评分标准表和类比评分计算方法,对该评价单元及其类比对象进行打分并计算它们的得分差值;根据得分差值求取该评价单元的可系数。

通过油气可系数标准和计算方法在全国129个盆地中的推广应用,既检验了可系数取值标准和所用基础数据的可靠性、可行性和适用性,保证了油气可量计算的客观性,又获得了全国油气可量。

西安石油大学石油与天然气工程学科研究生培养方案

鄂尔多斯盆地中部气田是我国最大的气田之一,其主要产层为奥陶系风化壳产层,其次为石炭—二叠系产层。其中石炭—二叠系产层中天然气主要为煤成气,这一点已得到共识,但对于奥陶系风化壳产层天然气的气源问题仍未取得一致的认识。许多学者已在这方面做了大量的研究工作,多数认为其属上古生界煤成气和下古生界油型气的两源混合气(杨俊杰等,1991,1992;曾少华,1991;孙冬敏等,19),但对于以哪一种气源为主力气源尚存在较大争论,主要有以下两种代表性观点。一种是以关德师等(1993)、戴金星等(1987,1999)、张士亚(1994)、张文正等(19)、夏新宇等(1998,2000)为代表,认为中部气田奥陶系产层的天然气主要是石炭—二叠系煤系烃源岩的产物,以上古生界煤成气为主;另一种是以陈安定(1994,2000)、黄第藩等(1996)、徐永昌等(1994)、郝石生等(1996)、蒋助生等(1999)为代表,认为中部气田奥陶系产层的天然气主要是下古生界奥陶系海相碳酸盐岩的产物,主要为自生自储的油型气。所以弄清中部气田奥陶系风化壳产层的天然气来源意义重大,直接关系到对气田成藏模式的认识以及油气评价、勘探部署。

笔者在前人大量研究工作的基础上,参考已有的天然气成因类型划分方案(郜建军等,1987;张义纲,1991;张士亚等,1994;戴金星等,1992,1999;徐永昌等,1994,1998;黄藉中,1991;冯福闿等,1995),结合中部气田天然气实际资料,得出鄂尔多斯盆地中部气田天然气划分标准(表5-8)。

(一)应用天然气组分的碳、氢同位素判别气源

1.用δ13C1和δ13C2相结合探讨气源

就沉积有机质热解成因天然气来说,其δ13C1值主要与成气母质类型和热演化程度有关,随母质类型变好而减少,随成熟度增高而增大。δ13C2值则主要与母质类型有关。源于腐殖型母质的煤成气,富集碳的重同位素而δ13C值偏大,而源于腐泥型母质的油型气δ13C值偏小。据此,许多学者都提出过一些大体一致的划分油型气和煤成气的指标界限(戴金星等,1992;徐永昌等,1994;张士亚等,1994;黄藉中,1991;张义刚,1991)。一般以δ13C2的界限值-29‰~-27‰为这两种类型天然气的分界。而δ13C1值:对油型气δ13C1>-55‰,一般为-50‰~-35‰;对煤成气δ13C1>-42‰,一般-38‰~-28‰。但是,由于δ13C1值随成熟度增高而增大,因此成熟度相对较低的煤成气与成熟度相对较高的油型气在δ13C1值域分布上的叠合现象是常见的,并往往造成判识上的困难和失误。这说明在天然气成因分类研究时,用δ13C1和δ13C2相结合的方法才是合理的、有效的(戴金星等,1992;徐永昌等,1994;黄第藩等,1996)。同时,甲烷是天然气中最主要的占绝对优势的组分,特别对高—过成熟气(干燥系数在0.95以上),那种仅用δ13C2以上重烃气进行成因分类和混源问题研究的方法(陈安定,1994),无疑降低了结果的置信度。

表5-8 鄂尔多斯盆地中部气田天然气划分标准

图5-10是根据甲烷、乙烷碳同位素判别天然气成因类型的δ13C1—δ13C2类型图,该图主要以甲烷碳同位素判别气的演化程度,而主要以乙烷碳同位素判别成气的母质类型。图中δ13C2<-30‰区域是比较典型的油型气分布区,δ13C2>-28‰是比较典型的煤成气分布区,而δ13C2=—30‰~—28‰之间的气有一定的混合作用或来自混合型母质。不难看出,盆地东、西部C—P气样主要落入煤成气区域, 气样主要落入油型气区域,中部气田 气样既有落入油型气区域,又有落入煤成气区域,还有落入两者的混合气区。

2.用δ13C1结合(δ13C2—δ13C1)分析气源

(δ13C2—δ13C1)值是一项与成熟度有关的参数,具有随成熟度增高其差值变小的特点(黄藉中,1991;陈安定,1994;黄第藩等,1996)。在成熟度相对较低的高成熟演化阶段(Ro=1.3%~2.0%)的早期,该值一般在12‰左右,而在过成熟阶段后期发生倒转,出现负值。因此,把它与δ13C1或δ13C2结合起来作图时,将能更好地揭示出不同成熟度天然气点群之间或不同δ13C1或δ13C2点群之间的成因联系和差别。如图5-11和图5-12所示,煤成气以盆地东、西部的C—P气为主,部分中部气田的 气;油型气以中部气田的 气为代表,还有部分中部气田的 气;两者混合气主要是中部气田 气。

图5-10 鄂尔多斯盆地古生界天然气的δ13C1和δ13C2关系图

图5-11 鄂尔多斯盆地古生界天然气的δ13C1和(δ13C2-δ13C1)的关系图(图例同图5-10)

图5-12 鄂尔多斯盆地古生界天然气的δ13C2和(δ13C2-δ13C1)的关系图(图例同图5-10)

3.用δ13C2与C2H6含量、δ13C3关系分析气源

近年来,一些研究者(郜建军等,1987;陈安定等,1994;黄藉中等,1991;冯福闿等,1995)强调了乙烷、丙烷碳同位素在区分两种不同母质热成因气(高演化海相腐泥型气与陆相煤系气)中的作用。表5-9列出了国内外若干有代表性的高演化海相腐泥型气与陆相煤系气的各组分碳同位素资料。可以看出:

(1)对处于低演化阶段的海相腐泥型气来说,其甲烷碳同位素一般小于-40‰,而煤系气一般大于-40‰,区分效果较好。但当C1/Cn>0.95即变为干气,尤其当此值达到0.96以上时,海相腐泥型气的δ13C1普遍升高至-32‰~-33‰,变得与煤系气不易区分。

(2)乙烷碳同位素在这两者之间所表现出的特征却是稳定和区分明朗。对海相腐泥型气来说,尽管其热演化程度很高(如四川盆地威远气田震旦系气的源岩Ro高达3.5%左右,气的δ13C2平均值为-31.9‰),而煤系气的热演化程度不管多低,两者之间一直存在一条基本上不可越的界线:δ13C2=-29‰。并且,随乙烷含量减少,即热演化程度增加,乙烷碳同位素之间的差异明显增大,这为用δ13C2为主判别高演化两种热成因气提供了可靠依据。

(3)丙烷碳同位素与乙烷碳同位素具相似属性——稳定而区分明朗。一般认为,煤成气δ13C3应大于-26‰,油型气δ13C3小于-28‰,δ13C3在-28‰~-26‰之间,煤成气和油型气难以准确鉴别。陈安定等(1993)研究认为,鄂尔多斯盆地中部气田油型气的δ13C3/δ13C2一般在0.9左右,两者差值较大;煤成气的该比值一般在0.95左右,两者差值较小。

表5-9 国内外已知海相腐泥型气与陆相煤系气的组分碳同位素分布平均值

图5-13、图5-14分别是鄂尔多斯盆地天然气的δ13C2与C2H6含量、δ13C2与δ13C3关系图。不难看出,盆地东、西部的C—P产层天然气主要为煤成气,中部气田O1m5产层天然气既有油型气,又有煤成气,还有两者的混源成因气。图中联结于两区之间的一个带显示出随C2H6含量减少,δ13C2值逐渐偏负的相关关系,违背了热演化规律,这是一种反常现象,混合才可能是唯一的解释。

从δ13C2与C2H6含量关系图(图5-13)中可见,鄂尔多斯盆地中部气田绝大多数 气样和近半数的 气样落在油型气区域,绝大部分C—P气样和少数 气样及个别 气样落在煤成气区域,另半数 气样和少数C—P气样组成一个带联结于两区之间,属两者的混合气。

图5-13 鄂尔多斯盆地古生界天然气的δ13C2和乙烷含量的关系图(图例同图5-10)

图5-14 鄂尔多斯盆地古生界天然气的δ13C2和δ13C3的关系图(图例同图5-10)

由δ13C2与δ13C3关系图(图5-14)可知,鄂尔多斯盆地中部气田 绝大多数气样落入油型气区域,C—P大部分气样和部分 气样落入煤成气区域,部分 气样和少数C—P气样、 气样落入混合气,这与用C2H6含量与δ13C2图的判别结果(图5-13)基本一致,所不同的只是煤成气比例有所增多,主要是过成熟气δ13C3偏重所致。

4.用δ13C1和δDCH4关系分析气源

从δ13C1—δDCH4的关系图(图5-15)可知,油型气主要以 为代表,部分 ,其δDCH4的分布窄且相对偏正,为-165‰±8‰;煤成气主要以C—P为代表,部分 气样,δDCH4的分布宽且相对偏负,为-175‰±20‰。

图5-15 鄂尔多斯盆地古生界天然气的δ13C1和δDCH4的关系图(图例同图5-10)

(二)气源岩/天然气的动态对比探讨气源

1.奥陶系灰岩在高演化阶段轻烃组成特征

为了研究高演化阶段奥陶系灰岩Ⅰ-Ⅱ型有机质生成的轻烃组成特征,将下古生界风化壳灰岩样在350℃和450℃温阶分别进行模拟观测其轻烃在热演化过程的组成特征,因为250℃热解产物可能反映的是岩石吸附和残余烃类,对于鄂尔多斯盆地风化壳灰岩来说吸附烃类是可能的,不代表其原始的烃类生成特征,只有在排出了吸附烃后(250℃),更高温度热解产物才能真正反映其生烃特征,另一方面,由于气源岩的排驱分馏效应,排出的链烷烃较多,这样岩石中残余的芳烃较多,因此在已发生过排烃的气源岩中,残余烃中芳烃高于对应天然气的芳烃含量,例如盐下的奥陶系灰岩样品,2069m奥陶系云灰岩350℃和450℃温度热解轻烃产物见图5-16,可看出随热演化程度增高热解产物中苯和甲苯含量逐渐增高的特点。

图5-16 鄂尔多斯盆地古生界天然气与气源岩不同阶段轻烃产物动态对比图

通过实验分析得出如下认识:①250℃轻烃反映的是岩石吸附和残余烃类,与350℃烃类组成差别较大,推断其可能是受到气体侵入吸附“污染”所致,不能代表其原始的烃类生成特征,因此,不能用风化壳灰岩吸附的烃类分布特征来作为气源对比依据;②灰岩中I型、Ⅱ型有机质随热演化程度增加,生成的烃产物同样具有苯和甲苯含量高的特征,鄂尔多斯盆地下古生界气源岩均处于高成熟—过成熟阶段,具有高苯和甲苯含量的天然气也有可能是下古生界气源岩来源的。

2.气源岩与天然气的轻烃组成动态对比

根据气源岩中轻烃的组成分布可以看出,奥陶系气源岩在高成熟阶段生成的轻烃产物中同样具有苯和甲苯含量高的特点,因此尽管林2井和陕6井奥陶系天然气中甲苯含量很高,但其仍然具有下古生界气源岩来源的可能性。天然气轻烃组成与下古生界气源岩热抽提物(反映残余或吸附烃类)也有差别(图5-16),因而有效的气源对比应该通过热模拟方法进行动态对比。也就是说,热模拟过程的产物可能真正反映气源岩的生烃特征。从图5-16中气—源岩轻烃组成对比可以看出,天然气中甲基环已烷和链烷烃含量也较高,这与上古生界煤岩组成有明显差别,与奥陶系灰岩组成也有差别,但其分布类似于2069m云灰岩在350℃和450℃的热模拟产物,其来源可能也与下古生界气源岩有关。

3.天然气轻烃组成平面分布特征

天然气轻烃组成与其成因密切相关。上古生界典型煤成气的轻烃组成主要有如下特征(李剑等,2001):①nC7、甲基环己烷和甲苯相对含量组成中,甲基环己烷含量最高,一般要高于60%;②甲苯含量较低,一般要低于15%。下古生界天然气的轻烃组成中甲基环己烷含量变化在35%~89%范围内,甲苯相对含量在25%~45%范围内,变化范围较大,说明下古生界风化壳的天然气来源比较复杂。

从本章第一节可知,平面分布上在鄂尔多斯盆地中部气田东部甲苯/甲基环己烷含量较高,一般超过0.5,有的甚至超过1.0(图5-3),对于苯/甲基环戊烷比值在平面上的分布情况类似于甲苯/甲基环己烷。据此可为鄂尔多斯盆地中部气田气源分析提供依据。

4.水溶气轻烃组成平面分布特征

在水溶气轻烃组成研究中最关心的可能是水中溶解的苯和甲苯含量多少及相对含量。由第四章第四节可知,鄂尔多斯盆地中部气田下古生界水溶气中苯和甲苯含量在平面上分布不均匀(图4-13)。总的来说,在中部气田的中东部具有相对较高的苯和甲苯含量,最高的可达1.16%和1.13%;而在中部气田的西部、北部及南部苯和甲苯含量较低,大多数井中苯和甲苯含量均低于0.1%,甚至缺乏,并且在水中溶解的主要是苯,而溶解的甲苯含量极低。这一方面反映了苯和甲苯在地层水中的溶解度不同,同时也反映了中部气田不同区块的天然气成因类型可能存在差异。

(三)气源综合对析

在上述研究的基础之上,根据下古生界天然气地球化学特征对鄂尔多斯盆地中东部不同部位天然气的成因进行了综合对析,各部位的划分情况如图5-17所示,将中部气田划分为4个区块分别进行气源对比。

表5-10列出了中部气田各区块天然气各项指标分布范围,为了便于对析,同时也列出了上古生界天然气和上、下古生界气源岩的相应指标数值范围。通过对析,鄂尔多斯盆地中部气田的天然气为混合来源已是不容否认的事实,只是在不同区块上、下古生界天然气混合程度不同而已。通过各项指标的综合分析,在中部气田的北部、西部和南部天然气主要以下古生界来源为主的混合气,而中部气田的东部则主要以上古生界来源为主的混合气。

中部气田的北部、西部和南部δ13C2值较低,一般分布在-33‰~-29‰之间,与上古生界天然气(δ13C2一般分布在-25‰~-22‰之间)差别很大,而与下古生界气源岩的热模拟产物δ13C2值(在-36.6‰~-32.0‰之间)较接近,甲苯/甲基环己烷比值在这三个区块均低于0.4,正己烷/甲基环戊烷一般小于1.0,三环萜烷/五环三萜烷比值相对较高,与下古生界气源岩比较接近,而与上古生界天然气之间差别较大,水溶气中的苯、甲苯含量在这三个区块均较低,40Ar/36Ar比值均较大,反映其与下古生界气源岩有更好的亲缘关系。

图5-17 鄂尔多斯盆地中东部下古生界天然气气源对比区块划分

表5-10 鄂尔多斯盆地中部气田气源综合对比表

中部气田的东部各项指标的分布与以上三个区块相反,δ13C2值分布在-28‰~-25‰之间,甲苯/甲基环己烷比值大于0.5,正己烷/甲基环戊烷比值分布在1.1~1.3之间,三环萜烷/五环三萜烷比值很低(仅为0.1),与上古生界气源岩和天然气比较接近,反映其可能主要与上古生界天然气来源有关。

(四)气源混合比计算

精确计算出天然气中各种成因类型混合比例是非常困难的,这主要表现在以下三个方面:一是计算混合比时的参数选择,二是端元值的确定,同一类型天然气端元值也有很大差别,三是无论是用哪种参数进行计算,只得出单井混合比,与中部气田的天然气混合比之间还存在一些误差。基于上述原因及本研究工作的程度有限,只对鄂尔多斯盆地中部气田的天然气混合区块进行了初评,选用的指标主要为乙烷,在端元值的选择时,下古生界来源气使用盆地南缘平凉组泥岩热模拟产物生气高峰期时的δ13C2值,为-34.7‰,上古生界来源气使用上古生界天然气δ13C2的平均值-25.1‰。计算公式如下:

鄂尔多斯盆地中部气田地层流体特征与天然气成藏

式中:nA,nB分别为上古生界天然气和下古生界天然气组分百分含量;X,1-X分别为上古生界天然气和下古生界天然气混合比;δ13C2(A),δ13C2(B)分别为上古生界和下古生界天然气碳同位素值。

利用上述公式,计算出鄂尔多斯盆地中部气田不同区块天然气混合比,如表5-11所示。

表5-11 鄂尔多斯盆地中部气田不同区块天然气混合比

从表5-11中可以看出,鄂尔多斯盆地中部气田的北部、西部、南部以下古生界天然气来源为主,约占60%~70%,上古生界天然气来源为辅,约占30%~40%,而中部气田的东部以上古生界天然气来源为主,约占70%,下古生界天然气来源为辅,约占30%。

LBM方法应用于天然气水合物沉积物中水合物分解过程的多相渗流规律研究

西安石油大学石油与天然气工程学科是西安石油大学下属的一个在职研究生学科,西安石油大学大学设有石油工程学院、地球科学与工程学院、电子工程学院、机械工程学院、材料科学与工程学院、计算机学院、化学化工学院、理学院、经济管理学院、人文学院、外国语学院、继续教育学院 ( 职业技术学院)、国际教育学院、思想政治理论教学科研部、音乐系、体育系16个院系部。西安石油大学石油与天然气工程学科研究生培养方案如下:

一、石油与天然气工程学科概况

“油气田开发工程”、“油气井工程”、“油气储运工程” 等学科分别于1990年、1994年和2001年获得硕士学位授权,2006年获得“石油与天然气工程”一级学科的硕士学位授权。2002年与2003年分别获得工程硕士与联合培养博士学位授权。在石油钻化学与环境保护、油气田开发与渗流理论及应用、油气井工程测量控制与信息应用技术、油气储输及安全技术等方面形成了鲜明特色。

本学科现有教授21人,副教授23人,博士学位教师38人。其中省“三秦学者”、“百人”和“教学名师”等6人,2007年被评为省级教学团队。本学科为陕西省重点学科,拥有国家、省部级重点实验室和工程中心等9个。“十一五”期间承担国家和省部级科研项目292项,科研经费共计1.1亿元。

二、石油与天然气工程培养目标

培养学生品行优良,具有良好的科学道德、敬业精神和合作精神;应掌握本学科坚实的基础理论和系统的专业知识,了解本学科发展趋势及技术研究前沿;能够运用专业知识、数学物理/化学方法、计算机技术等多种综合手段,分析和解决石油与天然气工程实践中存在的问题。具有从事科学研究工作或从事专门技术工作的能力。熟练掌握一门外语,具有实践能力、创新精神、国际视野与严谨求实的科学态度和作风。

三、石油与天然气工程培养年限

学习年限一般为3年,最长不超过4年。

四、二级学科及特色研究方向

本学科的二级学科包括:油气井工程、油气田开发工程、油气储运工程、海洋油气工程、非常规油气开发工程。

本学科形成了4个稳定的研究方向。

1. 石油钻化学与环境保护

本方向通过油气田开发工程、油气田应用化学与工程、环境化学与工程理论与技术交叉融合,进行化学作用机理研究及化学添加剂体系的开发与应用,为提高油气收率、保护储层与保护环境提供技术支撑。

2. 油气田开发与渗流理论及应用

本方向主要研究复杂油气藏油气渗流特征和物理/化学法油技术方法;建立油气田开发综合智能信息决策系统理论;将爆炸与燃烧、大功率电磁波等军工和高新技术应用于油气工程;研究物理(电磁、振动、高能气体)—化学耦合油增产新理论、新方法和新技术。

3. 油气井工程测量控制与信息应用技术

本方向主要研究油气井工程测量控制技术(特别是随钻测量和导向钻井控制技术);对油气井信息进行实时集、传输和处理,并与油气井测控技术相结合,实现油气井工程的动态监测、优化、控制以及提高决策与管理水平。

4. 油气储输及安全技术

本方向主要研究油气集输、储运工艺技术和完整性分析技术等。

五、课程设置、学时及学分规定

硕士研究生课程学习实行学分制,规定总学分(含实践环节)为32学分。课程结构设置为学位课、非学位课和必修环节。课程学习每18学时记1学分,学生必须修满32个学分。

六、培养方式与方法

1.研究生培养要德、智、体、美全面发展。政治理论学习应与思想政治教育相结合,积极参加公益劳动和体育活动。

2.研究生培养要理论联系实际,要深入掌握本学科专业的基础理论和专业知识,又要掌握教学、科研的方法,具备从事科学研究和独立担负专门技术工作的能力,要注意拓宽专业面。

3.在教学上,注重培养学生独立工作的能力,科学思维方法和创造性。教学的形式可以多样,应创造条件让研究生参加学术交流活动,了解本专业科技发展动向。

4.硕士研究生培养实行导师负责制。导师根据学位条例和培养方案,对每一位研究生制定出切实可行的培养。导师应教书育人,对研究生的政治思想、业务学习、工作科研等方面要定期检查,认真指导研究课题的进行。要注意培养研究生独立工作能力、创造能力和进取精神。

七、学位论文

论文工作是使研究生在科研方面受到较全面的基本训练,培养独立担负专门技术工作的能力。论文工作包括阅读文献、开题报告及撰写论文等。

1. 文献阅读和综述报告

在进入课题前,学生应查阅有关本研究方向和领域发展状况的国内外学术论文和技术报告,阅读数量不少于50篇(国外至少20篇),并完成一份综述报告(3000-5000字)。

2. 学位论文选题和开题报告

学位论文选题来源于应用课题或现实问题,有明确的职业背景和应用价值,并有一定的工作量。要能体现学生综合应用理论、方法和技术研究并解决工程技术问题或社会实践问题的能力。

开题报告选题应属于本学科范围。开题报告应该包括论文开题依据、研究内容、技术路径、创新点,以及论文完成拟提交的最终成果,由包括指导教师在内的论证小组给出评定意见。第五学期进行论文中期检查。

3. 学位论文质量要求

学位论文工作达到在开题中规定的目标,由学生独立完成。学位论文要求文句简练、通顺、图表清晰、数据可靠、撰写规范、严格准确地表达研究成果,实事求是地表述结论。

4. 学位论文评阅和答辩

需按照《西安石油大学硕士学位授予工作细则》执行。

考研政策不清晰?同等学力在职申硕有困惑?院校专业不好选?点击底部,有专业老师为你答疑解惑,211/985名校研究生硕士/博士开放网申报名中:s://.87dh/yjs2/

喻西崇1,刘瑜2,宋永臣2,李清平1,庞维新1,白玉湖1

喻西崇(13-),男,博士,高级工程师,主要从事深水工程、天然气水合物等研究,E-m ail: yuxch@cnooc.cn。

注:本文曾发表于中国石油大学学报(自然科学版),2011年第5期,本次出版有修改。

1.中海油研究总院,北京 100027

2.大连理工大学,辽宁,大连 116024

摘要:沉积物中天然气水合物的分解过程实际上是固态水合物在沉积物中吸收热量分解后发生相变的动态过程。在动态分解过程中,会发生复杂的多相渗流、传热和传质过程。掌握水合物分解过程中的多相渗流、传热和传质规律,是天然气水合物开技术的理论基础,对水合物开方法的选择、水合物开策略的制订及其对环境危害的研究等都具有非常的意义。本文根据沉积物中水合物分解过程中流体运移和孔隙介质的特点,在充分调研的基础上提出格子Boltzmann方法(LBM)应用于天然气水合物沉积物中多相渗流规律的新方法,该方法是介于宏观和微观之间的介观模型方法。并用由简单到复杂的方法:首先开展了LBM 方法应用于复杂微通道内单相、多相流动的数值模拟分析研究,然后在此基础上开展了LBM方法应用于多孔介质中单相流动的数值模拟分析研究;通过模拟得到复杂微通道内流场分布取决于微通道粗糙程度、弯曲程度、表面润湿性、流体介质特性等,多孔介质中单相流动的流场分布与孔隙直径(饱和度)和渗透率有关,沉积物中水合物的生成使得多孔介质渗透率大大降低。

关键词:LBM 方法;天然气水合物;沉积物;多相渗流

Preliminary Study for LBM Application to Multiphase flow Characteristics in Porous Media with gas Hydrate

Yu Xichong1,Liuyu2,Song Yongchen2,Li Qingping1,Pang Weixin1,Bai Y uhu1

1.CNOOC Research Institute,Beijing 100027,China

2.Dalian University of Technology,Dalian 116024,Liaoning,China

Abstract:Sediment decomposition of gas hydrate is actually solid hydrate in the sediments absorb heat decomposed the dynamic process of phase transition,dynamic decomposition process occurs complex multiphase flow,heat and mass transfer process ;Multiphase flow,heat and mass transfer process during gas hydrate decomposition,is the basic theory of gas hydrate production technology,and plan choices strategies of gas hydrate production,and great significance with on environmental hazards for gas hydrate decomposition.In this paper,simple to complex methods is adopted.Firstly,LBM method is lied to carry out a complex micro-channel single-phase,multiphase flow simulation analysis,then LBM method is again lied to single-phase flow in porous media numerical simulation studies.The results show that complex micro-channel flow field depends on the micro-channel roughness,bending degree,surface wet ability,fluid properties and other media.Single-phase flow in porous media depends on the pore diameter (saturation) and permeability of the sediment and the hydrate formation in the sediment so greatly reduces the permeability of porous media.

Key word:LBM method;gas hydrate;porous media; multiphase flow

0 引言

天然气水合物的开过程实际上是固态水合物在沉积物中吸收热量分解后发生相变的过程。首先,水合物分解是一个非常复杂的动态过程,分解过程会对沉积物储层的岩石特性和热力学参数产生重要的影响;其中储层岩石特性参数主要包括储层机械特性(如剪切弹性模量、杨氏模量、泊松比等)和储层岩石渗流参数(如孔隙度、渗透率、饱和度、毛管力等),热力学参数主要包括比热、导热系数和膨胀系数、分解热等。其次,水合物分解是一个非常复杂的相态变化过程;如固态水合物分解成水和气,水还可能再次形成冰,冰遇热还可能再次融化,融化后的水遇到天然气在适当条件下还可能再次生成水合物等。同时,水合物分解是一个吸热过程,水合物分解过程中会出现多相渗流(天然气、水合物、水、冰和砂等)、传热(热传导、对流、流体流动、水合物分解热、节流效应等)和传质(水合物的分解、流体流动、水合物二次形成、气体溶解和吸附、气泡成核和增长等)等过程。因此掌握水合物分解过程中基础物性参数和相态的变化规律以及水合物分解过程中的多相渗流、传热和传质规律,是天然气水合物开技术的理论基础,对水合物开方法的选择、水合物开策略的制订及其对环境危害的研究等都具有非常重要的意义。其中,掌握沉积物中天然气水合物分解过程中多相渗流规律是研究的基础,直接决定着传热和传质的方式和效率,也直接决定着今后制定水合物开发方案和开效率,因此开展天然气水合物分解过程中多相渗流的理论研究和定量描述沉积中水合物分解过程的多相渗流规律非常重要。沉积物中天然气水合物分解过程中多相渗流实际上是一种动态的流固耦合过程,是一种多学科交叉的科学问题,涉及流体力学、固体力学、传热学和热力学以及统计学等学科。目前,还没有商业软件专门用于沉积物中水合物生成和分解过程中多相渗流、传热和传质模拟软件,这方面的研究相对不成熟,目前还处在探索和试验阶段,因此本文试图对沉积物中水合物分解过程中多相渗流模拟方法进行深入研究,力图在理论研究方法上有所突破。

对于流动特性的模型计算研究按照不同尺度可以分为微观、介观和宏观3个尺度。对于宏观尺度的模型计算研究主要是根据质量、能量和动量守恒方程用有限元素的方法进行建模和计算,如一些商用CFD软件等。对于微观尺度的模型研究主要是应用分子动力学(MD)、直接蒙特卡洛模拟(DMS)等方法。而基于分子团的介观尺度上目前最流行的方法就是格子Boltzmann方法(LBM)。为了研究水合物分解过程的渗流特性中机理性的问题,用宏观尺度的建模计算方法是不恰当的,许多微观的机理性的问题无法应用宏观尺度的模型解释清楚。因此拟用微观和介观2个尺度的建模方法,即微观尺度上的MD法和介观尺度上的LBM 方法结合MRI方法得到的多孔岩心孔隙特性进行模型建立和数值模拟,对水合物分解过程的渗流特性进行模拟计算研究。

1 LBM方法在多相渗流模拟中的应用调研分析

1988年,Mc Namara和Zanetti[1]提出把格子气自动机中的整数运算变成实数运算,标志着格子Boltzmann方法的诞生。经过了近20a发展的格子Boltzmann方法为解决多相多组分流动问题提供了一个新的途径。

格子理论的提出基于这样的事实:流体的宏观运动是由大量流体分子微观运动的统计平均结果,单个分子的运动细节并不影响宏观运动的特性。因此,可以构造一种人工微观模型,使其在保持真实流体的基本特征前提下,结构尽可能的简单,粒子运动的细节尽可能的简化,且其宏观统计特性符合客观运动规律。

格子Boltzmann方法求解的方程是基于微观尺度上的统计力学的Boltzmann方程,但不需要解完整的Boltzmann方程。它有一些独特的优点:算法简单、能处理复杂边界、格子Bo1tzmann具有很高的并行性、微观和宏观方程之间的转换相对容易等。多相多组分的格子Bo1tzmann方法发展至此,主要有颜色模型和Shan-Chen模型。这2种模型分别从不同的角度描述流体内各组分间的相互作用。本文总结了颜色模型和Shan-Chen模型的发展、2种模型的特点及它们在二元非混相流体流动研究中的应用。

Rothman和Keller[2]提出了第一个模拟非混相两相流动的格子气自动机模型。这一模型以单相FHP模型为基础,引入2种有色粒子:红色和蓝色表示2种流体。此模型的提出是格子气自动机模拟两相流工作的突破性进步,但是它依然存在噪声及其他格子气自动机的缺点。之后,Gunstensen等[3]在R-K模型的基础上结合Mc Namara和Zanetti的模型和由Higuera、Jimenez[4]提出的线性化碰撞算子而提出一个新的模型。这一模型成功克服了原模型不满足伽利略不变性及含噪音的非物理性缺点,但压力仍然依赖于速度。此外还有线性化算子不能得到有效计算,模型不能处理不同密度和黏度的2种流体。

Grunau[5]等进一步发展了这一模型:用单弛豫时间碰撞算子简化了碰撞算子的计算并且选用了合适的粒子平衡态分布函数,并允许不同颜色粒子发生碰撞。改进后的模型在不可压条件下,可以得到宏观Nier-Stokes方程,能够模拟不同密度、不同黏度的两相流。

1993年Shan和Chen[6]提出了一种新的多相多组分格子Boltzmann模型。这一模型的最大特点是提出了直接描述分子间相互作用的方法,用一种伪势描述分子间的相互作用。1994年Shan和Doolen[7]又对模型进行了改进。模型的改进之处在于:①重新定义了平衡速度计算式中的uk项使碰撞在无相间相互作用力时满足动量守恒。②重新定义了混合流体的速度,将原来的按碰撞前状态计算改为按碰撞前后的平均值计算。如此则大大降低了宏观方程的误差。综合已有文献来看,颜色模型不如Shan-Chen模型应用广泛。

M.Krafczyk[8]用颜色模型模拟了多孔介质内的二元流动。在Gunstensen模型基础上建立了三维十九位格子上的颜色模型,模拟不同黏度及密度比的非混相二元流。这一模型通过以下几种两相模拟来验证:两流体间的静态平坦界面,非混相二元流在平行通道内流动,Laplace定律,气泡运动。模拟结果与半解析解一致。对2个大尺度的实际问题给出了初步模拟结果。2个问题为:废水批反应器内空气-水混合物的流动和泥流中的饱和滞后影响。对多孔介质内非混相二元流的实际问题模拟得到了量化结果。但同时可以发现对于这样大尺度实际问题的模拟,模型的稳定性成为一个主要的限制。

T Reis和T N Phillips[9]在原有的Gunstensen模型基础上提出一种新的颜色模型。这一模型构造了碰撞算子中两相相互作用部分,由此模拟出适宜的界面张力并且确定了界面张力的理论表达式。这一模型的可用性从两方面来验证:①比较界面张力的数值模拟结果与理论预测结果;②预测Laplace定律及非混相层状Poiseuille流。然后研究了不同黏度相同密度的2种流体的旋节线分离。最后模拟了2个气泡的合并过程,说明这一模型可以用来模拟密度比较大的两相流。

用于模拟多相多组分流的Shan-Chen模型和颜色模型近些年得到了很大地发展。由这2种模型都可以得到宏观上的Nier-Stokes方程,这是模型可用的最基本条件。Shan-Chen模型的最大特点是引入了直接刻画粒子间相互作用的势,它反映了多相多组分流的物理本质,易于理解。此外它在模拟时计算简单,得到广泛应用。它既可以模拟单组分流体的相变,也可以模拟多组分非混相流动,在模型上对组分数没有限制。颜色模型的提出比Shan-Chen模型早,特点是引入颜色梯度概念和颜色重标过程。它的提出为格子Boltzmann方法模拟多相多组分流带来突破性进展。2种模型在模拟简单的两相流(层状Poiseuille流、静态气泡)都可以得到与理论解吻合较好的结果(这是对模型可用性的验证),并在复杂流动的基础性研究中得到一定程度地应用。但2个模型都存在缺陷:如Shan-Chen模型中,只有相互作用力中的密度函数取指数形式 时,该模型才与热力学相关理论一致;用颜色模型模拟,重新标色过程的计算成本高,而且模拟产生的伪流速度大、范围广,结果误差大;两模型模拟多相流动时相界面都有一定的厚度,这对用格子Boltzmann方法研究一些问题形成障碍。因此各种模型仍需改进发展。

2 LBM 方法应用于复杂微通道内单相、多相流动数值模拟分析

当多孔介质中的孔隙尺度很小时,微尺度效应不能忽略。利用LBM 方法考察了复杂微通道内的单相和多相流动特性。

2.1 单相流体在带粗糙元的直微通道内的流动

模拟结果如图1和2所示。从图中可以得知带矩形粗糙元和三角形粗糙元的微通道,除了在近粗糙元区域,流体流场大致相同。在带有矩形粗糙元的壁面附近,形成了一些漩涡,而且,这些漩涡的位置、大小形状和粗糙元的几何形状有着密切的关系。在三角形粗糙元的壁面附近,流场产生明显扭曲现象。

图1 矩形粗糙元复杂通道的流场a,局部放大图b

图2 三角形粗糙元复杂通道的流场(a),局部放大图(b)

2.2 单相流体在带粗糙元的弯曲通道内的流动

图3 带粗糙元的弯曲微通道

带粗糙元的弯曲微通道如图3所示,弯曲通道的流场如图4所示。从中可以得知,在弯曲通道内的折弯处,产生一些漩涡,这些漩涡的数量、大小、形状和弯曲通道的几何形状以及粗糙元的形状有着密切关系。这些漩涡在很大程度上影响着整个流场。因此,在研究弯曲微通道的流动时,通道和粗糙元的几何形状不能被忽视。

2.3 气液两相流体在光滑直通道内的流动

本文用Shan-Chen两相模型模拟了水滴在光滑直通道内的流体特性。在Shan-Chen模型中,壁面的表面润湿性由无量纲系数Gt来调节,不同的G1值,得到的表面润湿性也不同。选取8个不同的Gt值(0.4,0.35,0.3,0.25,0.2,0.15,0.1,0.02)进行模拟,表征表面的润湿特性。模拟结果列于表1中。从表中可知,Gt=0.4与0.35,水滴表面上的接触角小于90°,通道上下壁面为亲水表面;Gt=0.3,0.25与0.2时,水滴的水平表面上的接触角在90°~150°,表面为疏水表面;Gt=0.15,0.1与0.02时,水滴在表面上的接触角超过150°,为超疏水表面,其中,Gt=0.02时,接触角为180°的理想超疏水表面,实际中不存在这样的表面。

表1 表面润湿性与G,的关系

模拟结果显示,表面的浸润特性对流动的影响很大。图5给出了Gt=0.4和0.02时,流动相界面分布情况,其中,深蓝色为气体,红色为液体。从图中可以看到,在亲水表面(Gt=0.4)通道内,液体会吸附在表面上。而在超疏水(Gt=0.02)通道内,液体与壁面之间存在一个微小的空隙,即液体与壁面之间存在一个微薄的空气层。

图4 弯曲微通道的流场(a),局部放大图(b),(c)

图5 不同浸润特性光滑表面流动相界面分布(t=600计算步长)

2.4 气液两相流体在粗糙直通道内的流动

笔者用规则的矩形凸起与凹槽来近似代表超疏水表面的粗糙元,结构如图6所示,其中浅蓝色矩形区域为均匀分布的粗糙元。取w=s=5 μm,h=10μm进行模拟计算。

图6 矩形粗糙元粗糙壁面直通道流动计算域

图7 不同浸润特性粗糙表面流动相界面分布(稳定状态)

图7给出了流动达到稳定状态时,不同浸润性通道内流体相界面分布。图中,深蓝色代表气体,浅蓝色代表固体粗糙元,红色代表液体。亲水表面(Gt=0.4)通道内的流动,液体充满粗糙元凹槽内部,如图7a所示;随着Gt值的减小,即通道表面的疏水性能逐渐增强,液体在流动过程中进入凹槽内部的液体也越来越少,气体填充在凹槽底部,形成气团,如图7b-d所示。当Gt=0.02时,液体并不进入凹槽内部,从凹槽顶部横掠而过,如图7e。

图8是Gt=0.02时,通道内局部的流线图。通道中心区域是液体的流动,凹槽内部为气团的运动,中心区域液体的流动驱使凹槽内部气团开始运动,并形成涡旋,漩涡的上部运动方向与液体流速相同。

图8 粗糙表面流动流线局部放大图(Gt=0.02)

图9 不同Gt粗糙表面流动接触线局部放大图

图9给出了不同壁面特性粗糙表面流动接触线的局部放大图,流体最前端在x方向的移动距离均为195格子。与光滑表面相比,粗糙表面对亲水表面和疏水表面上部的流动都有很大的影响,但是粗糙元的存在对理想的超疏水表面(Gt=0.02)上部的流动影响并不大,与光滑表面相比,流体接触线几乎没有什么变化。这是因为,流体在绝对理想的超水表面上流动时,流体完全脱离固体表面。

3 LBM 方法应用于多孔介质中单相流动数值模拟分析

3.1 水合物在单孔隙通道内的格子Boltzmann模拟

应用上述模型对多孔介质中的水合物生成、分解过程饱和度的变化影响多孔介质渗透率的特性进行了模拟。在300×300格子的计算域内, 4个角点分别为半径R=100的1/4圆形多孔介质骨架(红色),骨架中心形成多孔介质的孔隙空间。水合物在孔隙中心生成(绿色),为理想的圆形,水合物认为是固体。半径从0到100变化,从而模拟水合物的生长。骨架颗粒表面和水合物颗粒表面都是非亲水表面,与水之间的相间力系数Gw=0.1。如图10所示。

图10 水合物在单孔隙通道内的格子Boltzmann模拟

根据水合物的生长半径可以计算出孔隙度变化及单孔隙内水合物的饱和度SH。左右边界定义为压力边界,模拟黏度为1的流体从左向右流动。得到该计算域内流体的流量后,根据西定律可以计算出该计算单元内的渗透率变化:

南海天然气水合物富集规律与开基础研究专集

设水合物半径R=0时的渗透率为K0=1,有水合物存在情况下的渗透率为KSH,相对渗透率定义为k=KsH/K0。计算结果如图11所示,从图中看出含有水合物的多孔介质渗透率随着水合物的饱和度增大而急剧降低呈指数递减关系。

不同水合物半径下的流线图如图12所示。当有水合物生成时,流体的流道迂曲度增大,流体在孔隙中流动形成绕流,降低了多孔介质的流通性能,从而使渗透率下降。当水合物的半径与孔隙尺寸相当时,水合物与多孔介质骨架间仅仅留下狭窄的流动通道,渗透率几乎降低为0。

图11 相对渗透率与水合物饱和度的关系

图12 不同水合物半径下的流线图

3.2 水合物在多孔隙通道内的格子Boltzmann模拟

图13表示在250×250格子的计算域内,红色为半径等于25的多孔介质骨架颗粒,绿色为在孔隙空间中均匀生成的水合物,半径分别为R=0,5,10,15,20和25。白色线为流体在孔隙通道中的流线。

水合物饱和度与相对渗透率之间的关系如图14所示。曲线为Kozeny颗粒模型水合物占据孔隙中心时相对渗透率与饱和度之间的关系。Kozeny颗粒模型表示为

图13 多孔隙空间水合物生成过程的流线图

图14 格子Boltzmann模拟结果与经验模型的关系

南海天然气水合物富集规律与开基础研究专集

在忽略毛细力作用设下,水合物饱和度在[0.1,1]范围内n值取[0.4,1]。

从图14中可以看出,格子Boltzmann数值模拟得到的结果与Kozeny颗粒模型吻合较好。充分证明格子Boltzmann数值模拟是可行的,为下一步以此为基础开展复杂多孔介质中水合物饱和度与相对渗透率相关关系奠定基础。

4 结论和建议

沉积物中天然气水合物分解过程中多相渗流实际上是一种动态的流固耦合过程,是一种多学科交叉的科学问题,涉及流体力学、固体力学、传热学和热力学以及统计学等学科。目前,还没有商业软件专门用于沉积物中水合物生成和分解过程中多相渗流、传热和传质模拟软件,这方面的研究相对不成熟,还处在探索和试验阶段,因此本文试图对沉积物中水合物分解过程中多相渗流模拟方法进行深入研究,力图在理论研究方法上有所突破。

1)根据沉积物中水合物分解过程中流体运移和孔隙介质的特点,在充分调研的基础上提出了格子Boltzmann方法(LBM)应用于天然气水合物沉积物中多相渗流规律的新方法,该方法是介于宏观和微观之间的介观模型方法。

2)用由简单到复杂的方法开展沉积物中水合物分解过程中多相流动规律研究。首先开展了LBM 方法应用于复杂微通道内单相、多相流动的数值模拟分析研究,然后在此基础上开展了LBM方法应用于多孔介质中单相流动的数值模拟分析研究;通过模拟得到复杂微通道内流场分布取决于微通道粗糙程度、弯曲程度、表面润湿性、流体介质特性等,多孔介质中单相流动的流场分布与孔隙直径(饱和度)和渗透率有关,沉积物中水合物的生成使得多孔介质渗透率大大降低。

3)通过使用LBM 方法应用于单孔隙和多孔隙通道内单相流动数值模拟分析,同时与现有关系式计算结果一致,充分证明格子Boltzmann数值模拟是可行的,为下一步以此为基础开展复杂多孔介质中水合物饱和度与相对渗透率相关关系奠定基础。

4)本文只是将LBM 方法应用于多孔介质中多相流动规律的初步研究,今后还需要结合沉积物中天然气水合物分布的具体特点,考虑孔隙介质的微观特性、多相介质的流体物性以及流体介质与孔隙介质之间相互作用力等因素,同时还考虑水合物生成和分解的动态特性,结合传热和传质的特点,深入开展沉积物中水合物分解过程中多相流动规律,并与实验相结合,全面了解沉积物中水合物分解过程中多相流动规律。

参考文献

[1]McNamara G,Zanetti G.Using the Lattice Boltzmann Equation to Simulate Lattice Gas Automata”,Physical Review Leters[J].1988,61(20).

[2]Rothman D,Keller J.A Particle Basis for an Immiscible Latice-Gas Model,Physical Review Letters[J].1988,156(56).

[3]Gunsterser A,Rothman D.Lattice Boltzman Model for Immiscible Fluids,Physical Review Leters[J].1991,148(43).

[4]Higuera G,Jimenez D.Lattice Boltzman Model in Porous Media[J].Nuclear Energy,1999,146(31).

[5]Grunau C,Rothman D.Diffusion in Lattice Boltzman Model[J].Physical Review Letters[J].2000,92(11).

[6]Shan Xiaowen,Chen Hudong,Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components[J].Phys.,1993,47(1):1815-1819.

[7]Shan X,Doolen G.Multi-Component Lattice-Boltzmann Model with Inter-Particle[C].New York:Physicochemical Hydrodynamics:[C],1994.

[8]Krafczyk M.Comparison of a Lattice-Boltzmann Model,A Full-Morphology Model,and a Pore Network Model for Determining Capillary Pressure-Saturation Relationships[J].Published in Vadose Zone,2005:380-388.

[9]Reis T.Phillips T N.Lattice Boltzmann Model for Simulating Immiscible Two-Phase Flows[J].Journal of Phys A:Math Theory 2007,40:4033-4053.