天然气动态扩散的原因有哪些问题呢啊_天然气动态扩散的原因有哪些问题呢啊英语
1.天燃气的火灾危险性表现在哪些方面
2.天然气成因类型划分及气源分析
3.天然气发生火灾的原因有哪几种情况
4.2003年12月23日,川东气矿发生井喷事故.高压天然气携带一种有毒气体从地下喷出,向四周扩散,所到之处牲
经典的在大是大非面前谈科学8万吨这个体量只能说对波罗的海周围有点影响,想在全球范围内引发生态危机只能说是毛毛雨了
该谴责就谴责,别拿着子虚乌有的罪名去说环保一夜回到解放前,鉴定为内宣特有的自欺欺人我提醒一句,美国人胜券在握,没有必要冒着盟友翻脸的风险去炸北溪的,如果他想炸甚至可以说
服盟友大大方方明明白白的炸。
当前的形势只要俄乌战争一天,北溪1、2号就不可能通气,欧洲已
经缓过来了,能源武器是一次性,使用完了以后你将永远的失去这个市场。很多人并不懂这个道
理。
调子别起太高,万一查出来是俄罗斯人干的,铁证如山时不好收场。全球共畜养了10亿头牛, 每天的甲烷排放量约为25万吨8万吨, 还是好几天的泄漏量, 平均一天也就是两三万吨, 只要欧洲人把牛肉戒了, 就能解决这个问题
啦。
一、为什么说北溪 是人为蓄意破坏,原因是瑞典和丹麦的测量站在北溪天然气管道泄漏
区域都记录了强烈的水下爆炸,分别发生于格林尼治 时间而瑞典国家
地震台网在该地区发现了两次明显的爆炸,其中一个震级为2.3级和2.1级,相当于700公斤NTN的
当量。因此可以证实北溪是人祸,绝非天灾。?
而北溪泄漏 对人类影响巨大,后果不堪严重,需要全球人类来背锅,因为它或致史
上最大温室气体排放,通过计算出来的数据,这次大约出现了7.78亿立方米天然气泄漏,相当于释
放了大约50万吨甲烷,是美国历史上最大甲烷泄漏排放的五倍!不得不说,在全球变暖 的背景之
下,这样的温室气体排放,将是灾难性的,这意味地球的气候变化将会更加极端化。北溪天然气管道是谁炸的,目前还不清楚。
二、此外北溪天然气管道 被破坏,最大的受害者是谁,肯定是天然气使用欧盟和天然气供应者
俄罗斯,而最大的受益者肯定是买天然气的美国。
此次北溪给欧洲带来的不仅仅是基础设施的破坏,同时还严重伤害了欧洲国家的工业生
产、经济发展。而俄罗斯没有外供天然气,自然没有了外汇收入。“北溪”三条管道遭到破坏,受
益最大的无疑是液化天然气卖家美国。
仅在美国就向欧洲供应了六成LNG。
2022欧洲LNG进口量增长了270亿立方米,其中215亿立方米来自美国,美国在乌克兰战
争 进行之时,不声不响的闷声发了大财。
对于北溪元凶是谁俄罗斯则将矛头直指。俄外交部发言人扎哈
罗娃 还就北溪管道泄露点名。她提到,在今年2月7日的一次发布会上
曾威胁说,如果俄罗斯乌克兰,北溪2将被终结。我向你们承诺,我们能做到。扎哈罗娃要求美国对这一言论做出解释。
但美国坚称与北溪管道无关,拒绝为此负责。
三、北溪管道爆炸带来生态问题是小问题,大问题是欧盟的工业重组,因为环保欧盟工业完全围绕天然
气组织生产,现在来源被切断,不要想美国液化运输天然气会代替管道天然气,这是不可能的,欧
盟年消耗天气4200亿立方米以上,工业用气量占总量70%以上,就是全世界LNG船都来运输美国天
然气到欧洲也不够,况且欧洲也没有那么多港口天然气储备运输设施!?
所以欧盟只有一个选择就是工业生产转型,启用火电厂,德国已经把封存的火电厂启动,但是天气
还有很多作为化工生产原料,这就没办法了,欧盟的工业生产在第四季度大缩减是必然的,而且工
业生产企业在启动B就是外流。欧盟已经没有力量保护自己的工业了,工业生产企业外流主要
流出地第一美国,第二中国。
危害就是欧盟工业生产的收缩让世界经济复苏来的更晚,记住欧盟也是世界供应链的一部分不但消
费也产出大量工业制成品。
四、中美也进口大量欧盟大量工业制成品,欧盟供应链被破坏掉后会造成结
构性短缺,比如欧盟向中国进口空客备件,数控机床的控制部分,这些会让企业生产效率变低。
在资本市场上就是衰退的计价时间会被拉长,高风险资产价格会进一步被拉低,比如股票的科技股
股指还有下跌空间,加密币更不用说了,投行会加速清空超高风险的加密币资产,而被美元严重压
制的贵金属迎来较好的入场时机。
天燃气的火灾危险性表现在哪些方面
万喜燃气灶报警通常是由以下几个原因造成的:
1. 气源不足:万喜燃气灶需要足够的天然气或液化石油气供应。如果气量不足,则会导致燃气灶火苗变小,煮食时间延长,同时也容易出现报警现象。
2. 火焰扩散不稳定:万喜燃气灶点燃火焰后,火焰是否扩散稳定也是一个重要的因素。如果火焰扩散不稳定,则会导致万喜燃气灶不工作,并发出报警信号。这可能是由于燃烧室的堵塞,或燃烧器灰尘积累过多等原因造成的。
3. 燃气泄漏:如果万喜燃气灶的燃气管路出现泄漏,则会发出强烈的气味,并发出报警信号。这种情况非常危险,需要立即停止使用燃气设备,并联络专业的燃气安装工人进行修理。
4. 其他原因:还有一些其他原因也可能导致万喜燃气灶报警,例如传感器故障、电路故障等。这种情况下需要普通用户很难自行解决,需要联系厂家或者售后服务人员进行维修。
总之,当万喜燃气灶出现报警现象时,我们需要首先了解出现报警的具体原因,然后取适当的措施进行处理。毕竟,燃气安全是我们生活中的重要问题,我们应该高度重视,切勿忽视报警信号。
天然气成因类型划分及气源分析
随着城市建设和经济建设的飞速发展、人民生活水平的普遍提高和石油化学工业的发展。使用天然气的用户和单位越来越多,范围越来越广。近年来随着陕北天然气的大量开发和开,目前西安地区管道天然气的用户和单位已达到一定数量,天然气的普及使用,必将成为城市主要的生活、生产燃气。城市天然气的使用除居民用户、宾馆饭店、生产企业外,还有压缩天然气汽车(即 ComDress Natural Gas,简称CNG汽车)。 由于天然气的主要成份是甲烷(CH4)一般含量在95%以上,其特点是:①热值高(平均热值为8000千卡/立方米),燃烧稳定:②安全性高,天然气的燃爆浓度范围为5%~15%,而煤气为4%-35%,液化石油气为4%一24%2③性能优良,价格又比煤气和液化石油气低:④方便、卫生。故天然气已深受老百姓的青睐。天然气成份决定它是一种火灾危险性较大的可燃气体,属一级可燃气体。供应过程中稍有不慎,或管道破裂漏气就会逸散到空气中,遇到火源就可能发生火灾爆炸事故,甚至造成重大伤亡。因此,必须加强对天然气供应过程中的消防安全管理工作。 l、天然气的火灾危险性 天然气是通过气井从地下开出来的烃类和少量非烃类混合气体的总称。它在不同的地质条件下生成、运移,在一定的温度、压力下储集在地下构造层中。天然气的主要成份是甲烷(约95%以上),并含有乙烷、丙烷、丁烷、戊烷以上的烃类,还含有少量的二氧化碳、氢气、硫化氢等非烃组分。同时随着CNG汽车的逐步推广使用,其不安全事故也不断发生。①如 1995年8月12日,绵阳地方天然气公司CNG充装站,在给钢瓶充气时因脱水处理不净,而发生爆炸并起火成灾。②1995年9月29日,自贡富顺华油公司CNG充气站因钢瓶泄漏燃烧发生爆炸,造成重大经济损失和人员伤亡事故:③1995年10月7日,遂宁CNG充装站因钢瓶质量问题发生喷射燃烧,火焰柱高达20余米,造成直接经济损失18万余元。CNG场所及其钢瓶易发生燃烧爆炸的主要原因:一是CH4介质本身属一级可燃气体,甲类火灾危险性,爆炸浓度极限为5%-15%,最小点火能量仅为0.28毫焦耳,对空气的比重为0.55,扩散系数为0.196。说明极易燃烧、爆炸并且扩散能力强,火势蔓延快。二是气体处于高压状态,CNG技术要求充装站的压缩机必须加压至25MPa以上,才能将CH4压缩到钢瓶内,这是目前国内可燃气本的最高压力贮存容器。若钢瓶质量或加压设备不能满足基本的技术要求,稍有疏忽,便可发生爆炸或火灾事故。三是操作人员和使用者违章作业,违反操作规程。 天然气和煤气都是管道输送到用户,发生事故也有共同特点,管道天然气、煤气发生事故的原因多由于泄漏造成的,如①1994年3月30日,安徽省马鞍山市因自卸车碰断了一架空过马路的煤气管道,煤气迅速大面积扩散,住在附近的居民有11人因中毒过深而相继死亡,重伤达57人;②1995年1月3日17时53分,济南市和平路地下电力电缆沟因位于电缆沟西端470米处的中压煤气管道破裂,泄漏煤气通过土壤、电缆沟壁流入与煤气管道平行距离113米的电缆沟内并沿沟扩散积聚,遇到电缆沟上临时搭建的玻璃店内的蜂窝煤炉起火爆炸,致使2.2公里长路段的人行道和部分路面遭到不同程度的破坏,严重地段临街建筑物的窗玻璃被炸毁,造成13人死亡,40多人受伤,直接财产损失429.1万元;③1996年1月6日12时05分,西安市含光路中段某公司家属院3号楼,因管道煤气泄漏遇明火爆炸,突然的一声巨响,一层四个单元西北侧的几面墙壁顷刻间倒塌,室内煤气管道严重破裂,并引起火灾,造成3人当场死亡,13人受伤:④1996年1月19日、21日夜间,浙江省乐清市虹桥镇连续发生管道煤气泄漏事故,有4户居民共15人中毒,其中10人死亡,5人经抢救脱险,其主要原因是虹桥管道煤气公司在供电不正常的情况下,未能按安全生产操作规程操作,在停气和夜间恢复供气时没有事先通知用户,而用户又缺乏安全意识,对煤气的危险性认识不足,未按“用气安全须知操作,在煤气停用时疏忽大意,没有关好灶具开关和气表前阀门就去睡觉了。⑤1999年12月8日上午,西安市莲湖路西段发生地下电缆沟槽爆裂事故。原因是爆炸点附近天然气管道法兰连接处密封失效致使气体大量泄漏,进人与之安全距离不足的电缆沟及电话中继线井中,西安市电信局立通电信工程公司施工时操作工未进行气体检测,就下井进行作业,喷灯点燃天然气引起爆炸。这次事故造成该地区大面积停电,直接经济损失300余万元,伤15人,重伤3人。⑥1999年12月11N日上午11时23分,西安高新开发区高科花园8号楼发生天然气泄漏爆炸事故,8号楼一单元、二单元一层4户住家户天然气泄漏爆炸,屋内设施被炸坏,厨房地面爆裂,最深达80cm,一单元l~7楼住户窗玻璃均被震碎,炸飞的玻璃及东西飞到对面不远处的玫瑰大厦,Icm厚的玻璃也被击碎,住户及行人、附近民工等10多人受伤。⑦2000年1月5日早上9时30分左右,位于乌鲁木齐市河南路南二路下的天然气管道突然发生了大爆炸,使这一地区的水、电、暖气全部中断,爆炸点两个窖井盖被炸飞起来,其中一个比旁边的五层教学楼还高,南二路一段约60米长的混凝土路面开裂、错位,其中约20米长的路段被掀高了约60cm,水管被炸断,电缆沟被炸毁,事故造成铁路局9000多户居民“断气”,部分地区停水停电,近30万平方米的暖气停供。 2.天然气常见的火灾原因 2.1埋在地下的管线或室外管线受腐蚀、震动或冷冻等,使管道破裂漏气,气体通过土层或下水管道窜入室内,接触明火而着火或爆炸。 2.2 由于进户管线上的室内阀门关闭不严,阀杆、丝扣损坏失灵,阀门不符合安全质量要求,或误开阀门,使天然气逸出,遇到明火燃烧或爆炸。 2.3天然气金属炉或炉筒与可燃建筑物、可燃物品的距离不足,阀门调整不当,以致烧红炉子、烟筒,烤着可燃建筑物或物品而引起火灾事故。 2.4用天然气取暖的火炕、火墙,用火时间过长,炕表面过热烤着被褥、衣物或其它物品引起火灾。 3、天然气防火措施 3.1 天然气管道不宜埋入地下,最好是架空敷设。管线的安装要由专业人员进行,非专业人员不得乱拉乱接。 3.2 管线的阀门必须完整好用,各部位不得泄漏。严禁用其它阀门代替针型阀门。 3.3 天然气装导管的两端必须固定牢靠。导管应用耐油耐压的夹线胶管。 3.4在用户进户管线的适当位置,要设置油水分离器,并定期排放被分离出来的轻质油和水。当发现灶具冒油或冒水时,要立即停火,将油水排出后方可使用。 3.5天然气炉灶及管线要经常检查,发现漏气或闻着气味时,严禁动用明火和开关电气开关,应迅速打开门窗通风。如自己找不到泄漏点,应立即与供气部门联系。 3.6使用天然气取暖的火炉、火坑、火墙的烟道要畅通。烧火时如果突然熄灭,应隔几分钟再点,以防引起爆炸,金属烟筒口距可燃结构不应小于1米,并应装拐脖,防止倒风把炉火吹灭。 3.7天然气管线、阀门的维修,必须在停气时进行。停气、关气时必须事先通知用户。对安装的管线、阀门等应经试压、试漏检验合格后,方可使用。 3.8 一旦发生火灾事故,不要惊慌失措。要立即关闭总阀门,并用毛毯、被褥等浸水后进行扑救。也可使用二氧化碳、干粉等灭火器进行扑救,并及时报告消防部门。 4、预防管道天然气的技木和行政手段 除掌握了天然气、煤气的火险特性、火灾原因、防火措施等以外,还应从技术上和行政上加强管理和监督,及时发现和整改隐患,同时还要加强执法力度,市政规划、公用事业、公安消防、劳动安全、市政监察等各有关职能部门必须通力协作,共同参与预防和处置天然气事故,力争将这类事故隐患消灭在萌芽状态,严防各类违章建筑和燃气管道违章施工而留下隐患。 4.1 设置安全监测保护系统。①建立管道天然气、煤气泄漏情况的人工监测系统和定期巡回检查制度;②研制和用自力或燃气超流量自闭阀门,天然气管道由于外界因素而突然破裂时,造成的天然气泄漏往往是突发性的,燃气超流量自闭阀具有在燃气大量喷出时有效地实施自动关闭的保护功能;③有步骤的研究由计算机控制城市天然气管道泄漏监测、远距离集中显示和遥控锁定系统,逐步实现中央控制室控制监测管网重点部位的泄漏情况,发现泄漏时能及时关闭泄漏部位上游的阀门。 4.2严格按照燃气安全规程和法令办事。建设部、劳动部、公安部联合颁布的《城市燃气安全管理规定》(1991年5月1日起施行),西安市1996年4月25日颁布的《西安市城市燃气管理办法》等规程、法规,都是有关燃气安全的技术性规程和行政法规,只要严格按照要求去做,许多隐患就能消除,大多数事故就可以避免。 4.3加强宣传,提高全社会的安全防范意识。天然气、煤气管道网络延伸很广,涉及许多部门和单位,也关系到千家万户每个普通百姓,其安全知识的普及面越广越好、越深越好。对一些典型的燃气事故,只有深入访并通过广播、电视、报刊予以报道,剖析原因、责任和教训,才能收到预期的教育效果。 总之,确保管道燃气安全无恙,这不仅仅是燃气公司一家的事,它需要社会各方面的配合和支持,更需要每个普通百姓的共同关心和努力。尽管燃气管道事故在我们生活中屡见不鲜,但我们绝不能讳疾忌医,必须学习掌握、了解使用燃气的危险特性和安全防范措施,善待管道燃气,使它真正成为我们生活中的“天使”。
天然气发生火灾的原因有哪几种情况
(一)无机与有机天然气类型划分
天然气成因类型的判识主要依赖于天然气的组分和碳、氢同位素组成,并以天然气伴生的轻质油、凝析油、原油的轻烃地球化学特征以及稀有气体同位素组成为辅。腰英台地区的甲烷碳同位素明显偏重,其δ13C1>30‰。据戴金星(1992),除高成熟和过成熟的煤型气外,δ13C1>-30%。的均为无机成因的甲烷,因此利用CH4(%)与δ13C1(‰)图可知(图3-33),腰英台构造带主要分布煤型气区内,ChaS1井与YS1井(3466m)登娄库组可能为无机成因甲烷气或者少量的无机气混入的有机气,另外ChaSl井区的个别样品介于无机气与有机气之间,从而表明此研究区有深部的无机气混入,达尔罕构造带以及双坨子地区主要分布有机成因煤成气,煤型气与油型气需要进一步的判识(张枝焕、童亨茂等,2008)。
图3-33 无机与有机天然气类型划分
1—YS1(K1d);2—YS1(K1yc);3—YP1(K1yc);4—YP7(K1yc);5—YS2(K1yc);6—DB11(K1yc);7—D2(K1yc);8—DB33井区;9—ChaS1井区;10—双—坨子地区
(二)有机烷烃气体进一步鉴别
在有机成因的烷烃气中,生物气和裂解气均具有高甲烷含量、低重烃含量的特点,它们的区别之一是生物气甲烷碳同位素较低,而裂解气的甲烷碳同位素值偏重,根据生物气的一个良好鉴别标志δ13C1<-55%来看,长岭断陷天然气均属于裂解气。从δ13C1—1gC1/C2+3关系图来看(图3-34),腰英台构造带与ChaS1井区的天然气均属于煤型气,ChaS1井个别样品明显有无机气的混入,为煤成气与无机气的混合气。双坨子地区与腰英台地区的天然气组成特征明显存在差别,主要为原油伴生气以及凝析油与原油伴生气的混合气,由此表明两研究区的天然气的气源是不一致的,腰英台与达尔罕构造带的天然气主要为腐殖型干酪根裂解气,而非原油裂解气(张枝焕、童亨茂等,2008)。
苏联学者Гуцадо(1981)从CH4与CO2共生体系碳同位素热平衡原理出发,以世界上已有CH4与CO2共生体系中测得的δ13C.和δ13Cco2为依据,将自然界不同成因类型的CH4与CO2共生体系划分为三个区,即Ⅰ区为无机成因区,Ⅱ区为生物化学气区,Ⅲ区为有机质热裂解气区。根据图3-35不难看出,研究区腰英台构造带主要分布有机质热裂解气,YS1井与YS2井营城组天然气个别样品分布在无机气的成因区域,大部分样品介于有机质热裂解气区与无机成因气区,达尔罕构造带的天然气主要为有机质裂解气,因此腰英台构造区块的天然气极有可能存在混源特征,可能有无机气的混入,其混源单元还需要进一步的鉴别。
图3-34 天然气δ13C1—lg(C2+(C3)关系图
1—ChaS1井区;2—双坨子地区;3—YS1(K1yc);4—YS1(K1d);5—YP1(K1yc);6—YP1(K1yc);7—YS2(K1yc);8—DB11(K1yc);9—DB33井区
图3-35 CH4与CO2共生体系碳同位素分布图
1—YS1(K1d);2—YS1(K1yc);3—YP1(K1yc);4—YP7(K1yc);5—YS2(K1yc);6—DB11(K1yc);7—D2(K1yc);8—DB33井区
(三)无机成因甲烷气及识别标志
自然界烃类的大规模形成是有机-无机物质相互作用的结果,而现今油气勘探都是在有机烃源发育的盆地中进行,有机和无机烷烃气混合成藏使无机烷烃气不如非烃气易于识别。尽管如此,目前在许多裂谷盆地中发现了一系列可能的无机成因天然气的聚集,说明无机成因油气仍有一定的发展前景。
到目前为止,对无机成因烃类气体的判断主要依据有烃类气体的组分、碳同位素、烷烃碳同位素系列、与烃类气体伴生的非烃气体、稀有气体的含量及同位素以及地质背景综合分析等方法。松辽盆地有无机成因CH4的一些重要判别依据:
1.该区与无机CO2气藏等伴生的CH4气藏,有特高甲烷碳同位素及负碳同位素系列
在松辽盆地送的与无机CO2气藏等伴生的甲烷碳同位素分析样品,碳同位素值出现了大量的δ13C1值大于-30‰,其中还有大量大于-20‰的样品,并出现了大量负碳同位素系列样品,且上述两种特征还同时出现在同一气田(藏),显示了无机成因烃气的存在。
碳同位素是判识无机成因天然气最直接的证据。我国许多地区如云南腾冲县澡塘河、四川甘孜县拖坝、吉林长白山天池、内蒙古克什克腾旗热水镇以及国外许多地区如新西兰地热区、东太平洋热液喷出口、俄罗斯希比尼地块岩浆岩、美国黄石公园等都发现了无机CH4。这些地区的甲烷碳同位素虽然变化较大,但一般都大于30‰。
许多学者亦提出了鉴定无机成因CH4的下限值,有的为大于-20‰,有的为-30‰。但必须指出的是不论哪一个值都不是划分无机甲烷的绝对值,因为某些高(过)成熟的煤型CH4也有显示重碳同位素特征的特点,因此在确定其成因时还需综合考虑其他资料,如烷烃气碳同位素系列、地质构造背景等。其中碳同位素系列是识别有机、无机烷烃气最有效的手段之一。
有机成因的天然气主要源于沉积物中分散有机质的分解。在生烃母质干酪根热降解生成烷烃气的过程中,由于12C—12C键的键能低于12C—13C键,因此生物成因天然气中CH4及其同系物的碳同位素组成具有随碳数的增大而变重的分布特征,即δ13C1<δ13C2<δ13C3<δ13C4正碳同位素系列。这种分布特征几乎存在于所有有机成因的天然气藏,并被有机质热解成烃的模拟实验和理论推导所证实。而对于无机成因的烷烃气来说,重烃气含量很少,而且主要是由甲烷通过放电作用聚合形成的。在由CH4聚合形成高分子烃类或CO加氢合成烃类的过程中,由于12C—13C键的键能低于12C—12C键,使12C随分子量的增加而逐渐富集,从而形成甲烷同系物的碳同位素组成与有机成因的同位素系列正好相反,即形成δ13C1>δ13C2>δ13C3负碳同位素系列。如前面提到的俄罗斯希比尼地块与岩浆岩有关的天然气中δ13C1为3.2‰,δ13C2为9.1‰,δ13C3为16.2‰;美国黄石公园泥火山气的δ13C1为21.5‰,δ13C2为26.5‰。
徐家围子断陷在昌德、汪家屯、肇州以及朝阳沟等地区及腰英台气田均发现了甲烷碳同位素异常和负碳同位素系列,表明该区有无机烃类气体存在。汪家屯地区W a903井甲烷碳同位素最重达12.22‰,而乙烷的碳同位素为22.99‰;昌德地区表现的最为明显,FaS1、FaS2等井多个气样显示负碳同位素系列,且甲烷碳同位素偏重。从这些气样组分来看,干燥系数 一般都在0.98以上,显得很干,也与无机成因烷烃气的特征相似。
此外,也有学者提出负碳同位素系列并不是判断无机成因烃类气体最可靠的标志,由两种不同成因天然气混合,或由天然气的扩散引起同位素分馏均可造成这种现象的出现。以往的研究认为混合作用形成甲烷至丁烷碳同位素的完全反序排列可能性不大,但最近的同位素数值模拟研究结果表明,两种碳同位素正序排列的天然气,混合后可以得到碳同位素完全反序排列的天然气,但要求混合的两个端元的天然气必须具有不同的成因或来源,或它们是明显不同演化阶段的产物。从徐家围子地区的地质条件和同位素特征来看,很难用两种有机成因的气混合加以解释,因为要得到FaS1、FaS2那样重的甲烷负碳同位素系列,要求具有有机成因天然气甲、乙、丙碳同位素为15‰,-14‰,13‰相当的天然气存在,而这种天然气无法与有机质演化的任一阶段相对应,在徐家围子地区也未发现具这种特征的天然气。因此,混合作用不能合理解释该区存在的负碳同位素系列。
2.在该区火山岩的原生流体包裹体中发现CH4
地球深部流体的性质和成分是当前国内外学术界争论的热点课题。火山喷发物中含有大量的非烃气体、少量烃类气体、稀有气体以及沿一些深大断裂带及地震期前后有烃类气体、CO2和稀有气体释放已是公认的事实。近年来对火山岩及其地幔岩流体包裹体的研究进一步揭示其流体相主要为H2O、CO2、CH4、N2、H2、H2S及一些稀有气体。地幔物质及其所含流体在横向和纵向上分布也是极不均匀的,如河北坪尖晶石二辉橄榄岩幔源岩气体包裹体中还原性气体含量高达68.0%~93.4%,而山东栖霞大方山二辉橄榄岩样品中还原性气体为8.5%~39.3%。有学者研究了我国华北地区地幔岩的分布,认为地球深部由上到下依次为尖晶石二辉橄榄岩、尖晶石-石榴石二辉橄榄岩和石榴石二辉橄榄岩,分别代表岩石圈地幔和软流圈地幔。其中石榴石二辉橄榄岩中的H2和CH4的含量最高,而尖晶石二辉橄榄岩含H2和CH4相对较低,因而认为地球深部不同圈层可能孕育有不同性质和类型的天然气,由浅至深有H2O→CO2→CH4、H2富集的趋势,其中莫霍面附近可能是CO2的聚集带,岩石圈与软流圈界面附近可能是烃气的富集带,而H2可能有更深的来源。
在该区非气层段火山岩中集的火山岩流体包裹体,普遍有较高含量的无机烃气,证实无机成因烃类气体对该区气藏的贡献不容忽视。从徐家围子地区岩浆火山岩流体包裹体气液相成分来看,岩浆成分由基性变为酸性时,CO2有从少变多的趋势,CH4的变化趋势正好相反,因此上述研究成果及推断可能是正确的。在长岭达尔罕及腰南构造,在DB11 井的4017~4120m井段的基性岩中发现大量含CH4的气液相包裹体,其中CH4的最高含量可达到31.9%,该层测试产纯CH4,而在相邻的DS2井3670~3780m的酸性流纹岩中,产出以CO2为主的气藏,在该层中发育大量含CO2的气液相包裹本。
3.在该区发现大量示指深部低氧逸度环境的伴生气体
在松辽盆地,已发现部分高含H2及CO、H2S气的气藏,反映该区地壳深部存在低氧逸度环境,有利于甲烷的生成。无机成因气中低氧逸度组分往往构成共生组合,如DB11井营城组玄武岩段,H2含量达6%,H2S含量达(30~50)×10-6,与CH4共生。其各项同位素指标均反映这些组分源自无机成因,证实深部存在低氧逸度的大地构造环境。
4.从地质背景综合分析方法证实应当存在无机成因甲烷
一般认为,某些高(过)成熟的煤型甲烷也有显示重碳同位素特征的特点,并经不同成因天然气混合,或由天然气的扩散引起同位素分馏可造成负碳同位素系列。因此,在一些不含煤系的地区,如部分烃类气藏的δ13C1出现明显偏重,且出现负碳同位素系列,但周缘未发现明显的煤系烃源岩,可以确定存在较大规模的无机甲烷供给。
无机CO2与甲烷的共生,在各类有机烃类成藏条件差别不大的情况下,在局部地区出现特高、特大的气藏,或在有机烃类气体供给很少的区带,在圈闭中发现大量甲烷,揭示存在无机成因甲烷的供给。
以腰英台—达尔罕断凸带为例,该带已钻达基岩顶面的D2、DBIl井揭示,经二维、三维地震资料标定,该区周邻不存在煤系源岩,其它方向有机烃源的运移供给路线也很长。但在腰英台深层气田,发现富含CO2(含量15%~24%),以CH4为主(76%~85%)的气藏,也存在甲烷重碳同位素和碳同位素反向序列。在YS1、YS101、YS102、ChaS1、ChaS1-1、ChaS1-2、ChaS1-3井揭示大型腰英台气田,探明天然气地质储量达(600~700)×108m3的情况下,周围的ChaS2、D2、YN1井却仅发现了CO2气,未发现烃类聚集。这些表明腰英台深层气田有天然成因甲烷的混人。
由于岩石圈地幔及地壳深处广泛存在C、H、O、N等元素,无机成因天然气的主要组成是CO2,其次是CH4及N2等,无机成因气藏也是以CO2为主,含部分CH4、H2、N2、CO2等组分。在无机成因的甲烷气苗中,甲烷含量一般在5%~30%,但即使是这种较低含量,无机成因甲烷供给量也远大于有机成因甲烷供给量。19年Welham等指出,东太平洋北纬21°处中脊喷出的热液(400℃)中,含氢气、甲烷的氦,δ13C1值为17.6‰~-15‰,R/Ra约为8,说明这些气体是幔源的。该处喷出的H2的体积浓度为10%,每年喷出H2和CH4分别为12×108m3和1.6×108m3,如果以此喷出速度,即使仅按照与火山热的地质历史100万年来计算,该处喷出的H2和CH4即可达到1200×1012m3、160×1012m3,也远远大于有机物的生烃量。由此也可见,CO2的供给量是何等惊人。
同时在沉积盖层的深埋压实条件下,CO2易于与地壳中碳酸盐岩、碱性岩类发生反应,并大量溶解于水中,而产生大量的损耗。而在地壳沉积盖层的温度、压力条件下,CH4则有相对的化学稳定性,在CO2逃逸和散失量很大的条件下,无机成因CH4常可以形成相对富集,甚至形成无机成因甲烷为主的天然气藏。
(四)煤型气与油型气的鉴别
确认天然气属于煤型气还是属于油型气,对于追溯、对比烃源岩起着重要作用,目前最为常用的参数是乙烷或丙烷碳同位素。YS1井登娄库组天然气δ13C2为-24.7‰,为典型的煤型气,YS1井营城组天然气δ13C2为-26.4‰~-26.5‰,DBIl-1井与DBl1-2井营城组天然气δ13C2为-26.1‰~-28.7‰,均为煤型气和油型气混合气区,DB33-9-3井天然气的δ13C2为-29.3‰,也接近煤型气和油型气混合气区,按照δ13C2值-29%。为界限,长岭断陷天然气为高成熟的煤型气。
1.“V”型鉴别图(δ13C1-δ13C2-δ13C3)
考虑到甲烷、乙烷与丙烷三者碳同位素的综合信息,在δ13C1—δ13C2δ13C3相关图上(图3-36),利用烷烃成因天然气碳同位素系列数据,能够鉴别不同成因的有机天然气。其中Ⅰ区为煤型气,Ⅱ区为油型气,Ⅲ区为混合型气,Ⅳ区为深层混合气(戴金星,1992;顾忆等,1998)。从图3-36可以看出,腰英台构造带与达尔罕构造带的天然气主要分布在碳同位素倒转区以及煤型气和油型气或者深层气的混合气区,而且天然气的成熟度明显偏高,DBll井的天然气可能有少量的油型气混入,双坨子地区的天然气主要为煤型气与油型气,由此表明,双坨子构造带的天然气的特征明显不同于上述两个构造带,腰英台与达尔罕构造带的天然气明显具有多源的性质,而且可能混有深部的无机气,造成其甲烷的同位素明显偏重,导致其烃类组分的同位素发生倒转。
2.δ13C2-δ13C1图
通过利用δ13C2值的大小将天然气划分为煤型气、油型气以及煤型气与油型气的混合气区,再通过δ13C1受热演化程度的差异将天然气划分为未熟、低熟,成熟、高熟以及过成熟五个阶段,可以很好地将天然气中煤型气与油型气类型分开,从图3-37可以看出,腰英台与达尔罕构造带的DB33-9-3、DB33-5-5、DB11井以及ChaS1井的个别样品可能为高过成熟的煤型气与油型气混合气,而其余样品天然气均为高过成熟的煤型气,双坨子地区的天然气成熟度略低,分布油型气或煤型气,不同于腰英台与达尔罕构造带的天然气的特征。
图3-36 天然气δ13C2-δ13C1不同成因类型图
1—ChaS1井区;2—双坨子地区;3—YS1(K1d);4—YS1(K1yc);5—YP1(K1yc);6—YS7(K1yc);7—YS2(K1yc);8—D2(K1yc);9—DB11(K1yc);10—DB33井区
图3-37 天然气δ13C2—δ13C1不同成因类型图
1—ChaS1井区;2—双坨子地区;3—YS1(K1d);4—YS1(K1yc);5—YP1(K1yc);6—YP7(K1yc),7—YS2(K1yc);8—D2(K1yc);9—DB11(K1yc);10—DB33井区
3.C1/C1-5与δ13C1图
利用干燥系数(C1/C1-5)与δ13C1同样也可以判识天然气类型.对于煤型气与油型气在不同的演化阶段过程中,其干燥系数与δ13C1存在一定的对应关系,对于成熟度高的油型气与煤型气,其干燥系数与δ13C1必然很高,图3-38中A1、B1、C1、D1、E1为煤型气演化阶段,界限由虚线表示,A2、B2、C2、D2、E2为油型气演化阶段,界限为由实线表示。通过图3-38可以看出,腰英台构造带与达尔罕构造带的营城组与登娄库组的天然气主要分布在高成熟的煤型气与油型气区,双坨子地区天然气具有煤型气与油型气的混合特征,明显不同于两构造带的天然气特征。
图3-38 利用C1/C1-5与δ13C1图判别不同类型烷烃气体
1—ChaS1井区;2—双坨子地区;3—YS1(K1d);4—Ys1(K1cy);5—D2(K1cy);6—YP1(K1yc);7—YP7(K1yc);8—YS2(K1yc);9—DB11(K1yc);10—DB3井区
(五)天然气同位素倒转现象分析
长岭断陷腰英台与达尔罕构造带天然气碳同位素系列数据分析表明,碳同位素倒转系列和负碳同位素系列是其主体,并且碳同位素明显偏重。导致碳同位素异常的原因有很多,研究天然气碳同位素倒转的原因,对天然气的成因或其经受的次生变化作出判断,可以作为天然气运移途径和气源对比的一种间接方法。戴金星(1993)曾对烷烃气碳同位素系列倒转问题作过详细研究,认为引起碳同位素系列倒转的主要原因有:1)有机气与无机气的混合,二者分别属于正碳同位素系列与负碳同位素系列的典型,当二者混合时,很容易发生同位素分布的倒转现象;2)煤型气与油型气的混合,这是造成碳同位素系列倒转的主要原因;3)同型不同源或同源不同期天然气的混合,同源的早期形成的低成熟度的天然气散失一部分后的剩余气,与晚期较高成熟度形成的天然气形成混合天然气,可导致烷烃气同位素倒转;4)生物降解作用,细菌选择降解某些组分致使剩余组分变重;5)地温增高也可使碳同位素倒转,在碳同位素交换平衡下,若地温高于100℃,则出现正碳同位素系列;当温度高于200℃时,则正碳同位素系列改变成为负碳同位素系列(戴金星,1990);6)源岩性质控制,在中国陆相河湖交替发育的含油气盆地,烃源岩有机质的分布是不均一的,同一套烃源岩中I型和Ⅲ型有机质可能同时存在,因此其产生的烃类烷烃气可能发生倒转,松辽盆地北部深层烃源岩就有混源的特点。
此外,盖层微渗漏造成的蒸发分馏作用也是许多天然气藏同位素出现倒转的重要原因,Prinzhofer等(1995)在对Jenden的资料进行重新解释时,认为微渗漏作用更能合理地解释Appalachian盆地天然气同位素的倒转现象,他们按Jenden等提出的混合模式计算后发现有些样品点并不符合混合模式,提出了一种新的微渗漏模式。黄海平(2000)利用微渗漏模式较好地解释了徐家围子断陷深层天然气同位素倒转的现象。从图3-39看出,腰英台构造带的ChaS1井区、达尔罕构造带的DB11-1、DB11-2、DB33-9-3、DB33-5-5等井天然气样品同位素发生倒转,是受到盖层微渗漏作用的影响。
导致天然气碳同位素倒转可能是上述因素之一,也可能是两种或两种以上的因素引起的。长岭断陷深层天然气普遍被认为主要来源于沙河子组和营城组,经历了较复杂的构造变形和较高的成熟演化阶段,可能存在多源气的混合,主力烃源岩发育于盆地断陷晚期和坳陷早期,火山活动频繁,烃源岩除正常的热演化外,还受到因火山活动引起的异常热,主力烃源岩沙河子组和火石岭组在盆地分布不均一,有机质具有非均质性,因生气层上下部位和层内成熟度及有机质性质不一样,也会使同层同时生成的天然气同位素发生混合而倒转。盆地基底发育深大断裂,无机成因的CO2、N2普遍存在,并且丰度较高,在腰英台地区CO2含量平均值为20%以上,因此天然气中可能有无机成因烷烃气加入,天然气藏产层主要在登娄库组与营城组,成藏模式比较复杂,天然气可能以垂直运移为主,运移路径较长,因而可以引起多期次的天然气碳同位素动力分馏效应。
图3-39 天然气同位素反转解释模式
1—ChaS1井区;2-双坨子地区;3—YS1(K1d);4—YS1(K1yc);5—D2(K1yc);6—YP1(K1yc);7—YP7(K1yc);8—YS2(K1yc);9—DB11(K1yc);10—DB33井区
据此按照通常的天然气同位素的划分,结合长岭断陷腰英台地区天然气各种分析数据可知,YS1井登娄库组以及ChaS1井个别样品表现出无机成因气的特点,而腰英台构造带大部分井区的样品,如YS1、YS2、YP7井以及达尔罕构造带的DB33井区、DB1I井主要分布有机成因的烷烃气(张枝焕、童亨茂等,2008)。
2003年12月23日,川东气矿发生井喷事故.高压天然气携带一种有毒气体从地下喷出,向四周扩散,所到之处牲
天然气火灾发生的原因是()
参考答案:漏气、火源
决定天然气火灾危险性的因素是()。
参考答案:爆炸极限;自然点;扩散系数;相对密度;爆炸威力指数
天然气火灾的特性有:( )性、()性、()性、()性、()性。
参考答案:燃烧和爆炸;扩散;加热自然;腐蚀;毒害和窒息
(1)由于反应后生成二氧化硫与水,则反应物中也一定含有氢硫氧三种元素,由于燃烧需要氧气,所以硫化氢中一定含有氢硫两种元素.
(2)牲畜、飞鸟和没撤离的人员大量伤亡,水源被严重污染.抢险队和救援队迅速进入事故地点,并点燃了喷出的气体,切断了有毒气体来源.救援队员发现,低洼地的人、畜死亡率高,可总结出:该气体有毒,密度比空气大能溶于水,可燃烧;
(3)老人头埋在潮湿的草丛里,而幸免于难说明硫化氢溶解到了水草上的水中,吸入体内的比较少.
故答案为:(1)S和 H;
(2)有毒、密度比空气大、能溶于水、可以燃烧.
(3)大量的有毒气体上的水吸收.
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。