天然气动态仿真真实数据分析报告分析研究吗_燃气仿真
1.国内外研究现状
2.年天然气供需形势分析
3.相干体技术在天然气水合物解释中的应用及研究
4.南海北部海域天然气水合物成矿区游离气分布特征研究1
5.国内天然气产量连续5年突破千亿方,天然气的前景怎样?
6.伍德麦肯兹数据平台使用功能
7.天然气成因类型划分及气源分析
8.天然气的前景怎样?
①张国华等.1998,石油和天然气勘探地质评价规范,北京,中国海洋石油总公司。
勘探目标评价和风险分析方法是石油公司的核心技术之一。自1998年中国海油建立了《石油和天然气勘探地质评价规范》以来,对石油和天然气勘探全过程中的地质评价,尤以其中包括的勘探目标评价和勘探风险分析工作起到了促进作用,是使勘探管理工作与国际接轨的重要技术环节。勘探目标评价与勘探风险分析浸透了商业性理念和相关的评价技术,近期集束勘探方法的产生和更进一步的价值勘探的提出,就是执行这一规范的直接成果。
一、石油和天然气勘探地质评价
油气储量的增长是任何一个油公司生存、发展的根本所在,世界上的各大油气公司,无一不将油气勘探工作放在首位,并把油气风险勘探视为一种商业经营活动,力求勘探工作优质高效,即用有限的资金投入而能获得更多的、有商业开采价值的油气储量。
图5-32 油气勘探地质评价程序
中国海油一直在探索一套具有自己特点的油气勘探工作和管理模式,用以具体指导海上油气勘探工作。在总结勘探经验和吸取国外油公司管理经验的基础上,按照勘探工作要革新管理、优化结构、科技进步的指导方针,于1998年编制成此《规范》。它规定了中国海油在石油和天然气勘探全过程中的地质评价阶段及各阶段地质评价的目的、任务、程序、内容以及应采用的技术、标准和应采用的成果和要求。它适用于中国海油所进行的油气勘探活动中的地质评价工作。
一般而言,石油和天然气勘探地质评价的全过程,系指从某一特定区域的石油地质调查开始,到提交石油(或)和天然气探明储量为止的勘探活动中的地质评价工作。根据油气勘探活动的阶段性和地质评价的目的、任务,又将地质评价全过程进一步划分为区域评价、目标评价和油气藏评价三大阶段,具体阶段划分和工作程序见图5-32,各阶段的具体含义如下。
a.区域评价阶段:即从某一特定的地理区域(可以是盆地、坳陷、凹陷或其中的某一部分)的勘探环境和石油地质调查开始,到决定是否谋求区块油气探矿权为止的地质评价工作全过程。很明显,区域评价阶段的主要目的,在于谋求获得石油和天然气探矿权。
b.目标评价阶段:即从获得区块的油气探矿权后进行勘探目标优选开始,到预探目标钻后地质评价完成为止的地质评价工作全过程。当然,目标评价的主要目的,在于发现商业性油气藏。
c.油气藏评价阶段:即从预探目标的油气藏评价方案开始实施,到提交探明储量为止的地质评价工作全过程。油气藏评价阶段的主要目的,在于落实可供开发的石油和天然气探明储量。
二、区域评价
区域评价一般按资料准备、区域地质特征分析、含油气系统分析和勘探区块选择4个阶段循序进行(图5-33)。四个阶段的具体内容如下。
图5—33 区域评价程序
a.资料准备:为区域评价收集、提供有关投资环境、区域地质背景和各项有关的基础资料。
b.区域地质特征分析:阐明评价区的构造、沉积特点及其发育演化史。
c.含油气系统分析:确定评价区含油气系统及其油气资源潜力。
d.勘探区块选择:确定有经济开发前景的油气聚集区块,并谋求其油气探矿权。
在评价内容中,主要包括了资料准备,具体为各种资料收集、基础资料的补充和完善、建立区域评价数据库工作;区域地质特征分析,包括区域地层格架的建立、地震资料连片解释、沉积体系及岩相分析、表层构造和断裂体系分析、基底结构和盆地演化特点分析工作;含油气系统分析包括烃源识别、储、盖层特征及时空分布、盆地模拟分析、含油气系统描述等工作;勘探区块选择包括成藏区带评价、有利区块选择、谋求油气探矿权的建议等内容。
评价要求作到成藏区带评价;油气成藏模式预测;潜在资源量预测;区带勘探风险分析和工程经济概念设计和评价。
最终提交的主要成果包括文字报告的7项内容、27种附图、8类附表及相关专题研究附件。
三、目标评价
目标评价一般按资料准备、勘探目标优选、预探目标钻前评价、预探井随钻分析和预探目标钻后评价5个阶段循序进行(图5-34)。在勘探程度较高的地区,勘探目标优选和预探目标钻前评价可以同步进行;在已知油气成藏区带内则当以圈闭的落实和预探目标钻前评价为重点。
5个阶段主要内容如下。
a.资料准备:为目标评价提供必要的地质背景资料和基础资料。
b.勘探目标优选:优选可供预探的有利含油气圈闭。
c.预探目标钻前评价:提交有经济性开发效益前景的钻探目标及预探井位。
d.预探井随钻分析:发现油气藏及取得必要的地质资料。
e.预探目标钻后评价:对预探目标的石油地质特征进行再认识和总结勘探经验教训,并提交获油气流圈闭的预测储量及进一步评价的方案。
评价内容主要包括资料准备,具体为资料收集、地震资料采集和处理、建立目标评价数据库;勘探目标优选包括查明和落实各类圈闭、圈闭的油气成藏条件分析、圈闭的潜在资源量计算、预探目标优选;预探目标钻前评价包括圈闭精细描述、圈闭的油气藏模式预测、圈闭的潜在资源量复算、圈闭的地质风险分析、圈闭的工程经济概念设计和评价、预探井位部署建议、预探井钻井地质设计;预探井随钻分析包括跟踪了解钻井动态、随钻地层分析和对比、随钻油气水分析、钻井设计调整和测试层位建议等;预探目标钻后评价包括预探井钻后基础资料整理和分析、圈闭石油地质再评价、油气藏早期评价等项内容。
其中,十分重要的是要求对预探目标做到:圈闭精细描述、圈闭的油气藏模式预测、圈闭潜在资源量计算、圈闭地质风险分析、圈闭的工程经济概念设计与评价、预探井位部署建议和预探井钻井地质设计。
要求预探目标钻后评价做到:圈闭的石油地质再评价、油气藏早期评价、预测储量计算、油气藏开发早期工程经济评价和油气藏评价方案建议。
最后要提交预探目标评价报告,内容有预探目标评价及评价井钻探方案文字报告8项内容、附图16种、附表5类。预探目标钻后评价内容包括文字报告5项内容、附图15种、附表14类。
图5-34 目标评价程序
四、油气藏评价
油气藏评价按资料准备、油气藏跟踪评价和探明储量计算3个阶段实施(图5-35)。油气藏评价应是滚动进行的,随着勘探程度的提高和资料的积累,从宏观的油气层分布范围和规模等框架描述到微观的油气储集空间分布和体积等的精细描述,不断提高精度。
图5-35 油气藏评价程序
3个阶段的主要内容如下。
a.资料准备:为油气藏评价提供必要的地质背景资料、基础资料和各种条件。
b.油气藏跟踪评价:探明获油气流圈闭的油气层分布范围、规模和产能。
c.探明储量计算:提交可供商业开采的石油和天然气探明储量。
主要评价内容为资料准备包括资料收集、建立油气藏评价数据库;油气藏跟踪评价包括评价井钻井地质设计、评价井随钻分析、评价井完钻跟踪评价、评价方案调整建议、油气藏终止评价报告;探明储量计算包括油气藏结构、储层性质、储层参数、油气藏特征、油气藏静态模型描述、油气藏模式研究、探明储量计算及评价、开发方案概念设计、采收率研究、工程经济评价、探明储量报告的编写等。
需要注意的是,工程经济评价要包括勘探和开发工程参数,勘探和开发投资额操作费估算,经济模式和财务参数的选取,内部盈利率、投资回收期、净观值和利润投资比等指标的计算,敏感性和风险分析等内容。
最后应提交油藏终止评价报告和探明储量报告。
油藏终止评价报告包括文字报告6项内容、附图17种、附表23类。
探明储量报告按国家矿产储量委员会的储量规范和储量报告图表格式要求完成。
五、地质风险分析方法
勘探风险分析是石油公司勘探投资决策的重要参数,如前所述,勘探工作地质评价各个阶段都要进行风险分析。当然投资决策并不完全取决于地质风险的高低,还取决于石油公司的资金实力和承受风险的能力,但地质风险毕竟是投资决策中不可稀缺的基本参数。
根据多年勘探实践,并参考外国油公司风险分析经验和方法,我们确立了以地质条件存在概率为核心的地质风险分析方法。
本方法适用于中国海油油气勘探中预测圈闭的钻前评价分析,也可以用于对盆地或凹陷进行资源量预测时的地质风险分析。
此法的目的在于通过对形成油气藏基本石油地质条件存在的可能性分析,预测或估计目标圈闭的地质成功概率,为勘探目标经济评价和勘探决策提供依据。
一般而言,风险(Risk)通常解释为失败的可能性。油气勘探过程中的风险主要包括地质风险、技术风险、商业风险和政治风险等。地质风险(Geological Risk)指勘探者对勘探目标基本石油地质条件认识不足而导致勘探失败的可能性。而地质成功概率(Probability of Geological Success)或称地质把握系数,是预计目标的圈闭经钻探获得商业性油气发现的概率。地质风险分析(Geological Risk Ana1ysis)则是用概率统计学原理和圈闭评价方法,研究并量化形成油气藏的基本石油地质条件存在的可能性,预测目标圈闭的地质成功概率。
(一)地质风险分析方法
预测地质成功概率的方法有地质条件概率法、历史经验统计法和类比法等多种方法。这里采用地质条件概率法,当然,也可以根据具体情况使用多种方法进行比较和互相印正。
1.地质条件概率法的基本依据
a.油气藏的形成需要同时具备烃源、圈闭、储层、盖层和运聚匹配等基本石油地质条件,缺一不可;
b.各项地质条件必须满足彼此互相独立的假设;
c.各项地质条件存在概率之积即为该目标圈闭的地质成功概率。
2.地质条件存在概率的取值原则
a.各项地质条件存在概率的求取有多种方法,本规范采取由已知与未知的联系来判断未知的原则,并强调占有资料的类别和可靠程度对分析结果的影响。
b.正确分析各项石油地质条件存在概率和资料的可靠程度是测算目标圈闭的地质成功概率的关键。要求必须掌握本区的石油地质条件和资料状况在目标评价总和研究的基础上进行地质风险分析和取值。
c.由于不同地区地质条件千差万别,使用者也可以根据各盆地的实际情况对取标准作适当调整和修改,但应予以说明。
(二)地质风险分析程序
首先对基本石油地质条件进行分析,确定或估计其存在概率;然后计算单层或多层圈闭的地质成功概率。
1.基本石油地质条件分析
a.烃源条件:①根据同盆地、同凹陷或同构造带内油气田分布情况,已钻探圈闭或井的含油气情况,油气苗和其他油气显示情况(地球物理烃类检测、化探、摇感等),确定是否存在成熟的烃源条件;②烃源岩的体积;③烃源岩中有机质的数量和质量;④烃源岩中有机质的成熟度;⑤资料类型和证实成度(地震、录井、钻井、岩心或露头以及资料的密度和质量)。
b.储层条件:①同盆地、同凹陷或同构造带内已钻圈闭相同储层的储集能力及优劣成度;②储层的沉积相和储集体类型;③储层的岩性、厚度及分布的连续性;④储层的储集类型和物性条件;⑤储层段是否有同盆地、同凹陷或同构造带内的井可供标定、模拟和对比;⑥资料类型和证实成度(地震、录井、测井、岩心或露头以及资料的密度和质量)。
c.盖层条件:①同盆地、同凹陷或同构造带内已钻圈闭同类盖层的封闭能力及优劣程度;②盖层的沉积相、岩性、厚度及稳定性;③盖层的封闭类型和垂向封堵能力;④盖层中断层的数量、性质、规模及活动时期;⑤资料类型和证实程度(地震、录井、测井、岩心或露头以及资料的密度和质量)。
d.圈闭条件:①圈闭类型及规模;②同盆地、同凹陷或同构造带内同类型圈闭的含油气情况;③断块、岩性等圈闭的侧向封闭条件和性能;④地震测网的密度和资料的质量。
e.运移条件:①油气运移通道类型,如砂岩输导层、断层面、不整合面、底辟、高压释放带等;②供烃范围内圈闭与有效烃源岩连通的路径及通畅程度;③油气运移的方式、指向和距离。
f.保存条件:①圈闭形成后构造或断裂活动对圈闭封闭条件的影响;②区域水动力条件对油气聚集的影响;③是否遭受过水洗或生物降解破坏作用;④油气是否有过热或非烃气体(CO2、N2等)的潜入;⑤油气扩散作用对油气藏的影响。
g.运聚匹配条件:①同盆地、同凹陷或同构造带内同期的圈闭是否存在油气田或油气藏;②圈闭形成时间与油气主要生成时间、运移时间的关系。
2.地质条件存在概率的评估
使用地质条件存在概率评价标准,来评定目标圈闭各项地质条件的存在概率。
3.目标圈闭地质成功概率计算
a.单层圈闭地质成功概率的计算。
单层圈闭地质成功概率为该层各项地质条件存在概率之积,即:
中国海洋石油高新技术与实践
式中:Ps为单层圈闭的地质成功概率;Pt为烃源条件的存在概率;Pc为储层条件的存在概率;Pg为盖层条件的存在概率;Pq为圈闭条件的存在概率;Py为运、聚匹配条件的存在概率。
b.多层圈闭地质成功概率的计算。
如果各层圈闭对应的各项地质条件均相互独立,则:
该目标圈闭(构造)至少有一层圈闭获得地质成功,其概率为Pas:
中国海洋石油高新技术与实践
式中:Ps1为第一层圈闭的地质成功概率;Ps2为第二层圈闭的地质成功概率;Psn为第n层圈闭的地质成功概率,为了强调主要的钻探目的层,n值一般不大于3。
该目标圈闭各层圈闭均获得地质成功,其概率为Pts:
中国海洋石油高新技术与实践
最后,为了更好地把握主要地质风险因素,提高风险预测水平,并不断完善地质风险分析方法,要求进行钻后相关数据的整理,并按要求填写地质条件的钻探结果和钻后分析,对照钻前预测验证其符合程度,分析钻探成功或失利的原因。
六、集束勘探方法
中国海油入市以来,其经营管理方式迅速与国际接轨。反应在勘探上,也实现并正在实现着一种理念的转变,即由计划经济遗留的“储量指标”勘探理念——“我为祖国献石油”,向市场经济“经营型”勘探理念——“股东要我现金流”转变。入市后,股市对油公司业绩的衡量标准是现金流,它体现在勘探上不仅是新增储量的多少,而是一系列的经营指标——储量替代率、桶油勘探成本和资本化率。
储量替代率:是指新增探明可采储量与当年产量之比。
桶油勘探成本:是指每探明一桶可采原油储量所需的勘探费用,包括管理费用、研究费用、物探费用和无经济性发现的钻井费用。这些费用需进入当年勘探成本,叫做成本化。
资本化率:指有经济性发现的钻井费用与总勘探费用之比,这部分费用不进入当年勘探成本,可在油田开发中回收,故称资本化。
储量替代率反映了储量资产的增减。桶油发现成本是衡量勘探经营总体水平的指标,在保持稳定的勘探投人,保证100%储量替代率的前提下,要降低桶油发现成本,就要降低经营管理费用和每公里物探作业费用与每米进尺的钻井费用。当然大的储量发现会导致桶油勘探成本大幅度下降,但除特殊需要,油公司更希望保持股市稳定,无需披露重大储量发现。资本化率反映了油公司所占有的勘探区块(也是一种资产)的质量,它不仅可以降低桶油成本,更重要的是表现所占有的勘探区是否具备一定资源潜力、储量代替率是否有资源保障。
要想有多的储量发现就要打更多的井,在保证桶油发现成本承诺的前提下,只有降低单位作业成本。面对发展需要的压力、投资者的压力、服务价格走向市场后的压力,必须走出一条勘探管理新路子,于是集束勘探思路孕育而生。
集束勘探是探索适应市场经济条件下多快好省的勘探新理念,主要包括以下3层含义。
a.集束部署:着眼于一个领域或区带,选择具有代表性的局部构造集中部署,用较少的工作量以求解剖这一领域或区带,达到某一确定的地质目的。
b.集束预探:基于不漏掉任何一个有经济性油气藏为出发点,简化初探井钻井过程中取资料作业和测试,加强完钻过程中的测井工作,以显著提高初探井效率,大幅度降低初探井费用,用简化预探井、加速目标的勘探方法。
c.集束评价:一旦有所发现,则根据地下情况,优选最有意义的发现,迅速形成一个完整评价方案,一次组织实施,缩短评价周期和整个勘探周期。如有商业性,使开发项目得以尽快实施。
集束评价钻探包括两类不同取资料要求的钻井,一类是取全取准资料的井,此类井要充分考虑开发、工程、油藏甚至销售部门的需要,取足取好资料;另一类井是为了解决复杂油气田面上的控制问题,需要简化其中一些环节,作为集束井评价,以求得到以最低的评价费用取全取准资料,保证储量计算和编制ODP方案的需要。
在实施集束勘探一年的时间中,我们针对一个有利区带和目标共钻探集束探井20多口,初步见到以下效果:①储量代替率可望达到151%;②资本化率39%;③桶油发现成本保持在1美元;④完成了历年来最高的和自营勘探投资——16.75亿元;⑤建井周期缩短2/3;⑥每米钻井进尺费用降低40%。
通过一年的实践,主要体会如下。
1.以经济性发现为目的,统筹资料的获取
初探井是以经济性发现为目的的,关键在于证实有一定烃类产能、有一定厚度油气层的存在,精确的测试资料、储层物性资料、原油物性资料都可留在评价井钻探中获取。这就可以在初探井中作到不取心、不测试,从而大大简化钻井程序,达到降低钻井成本的目的。
一般来说初探井的经济成功率只有10%之间,我们可以在90%左右的初探井中实现低成本探井。事实证明用电缆式测试(MDO)、加旋转井壁式取心技术,完全可以保证不漏掉有经济测试价值的油气层。集束评价更有利于有目的地取好油藏评价的资料,在进行了早期油藏评价后,我们对油气藏模式有了基本的认识,就可以有目的地安排油藏评价井资料获取方案,大大减少了盲目性。
2.集束勘探在资料问题上体现了计划性、目的性
集束勘探“三加三简”的有所为和有所不为的获取资料原则——抓住有无油气,有油气则加强,无油气则从简;突出经济性,有经济性则加强,无经济性则从简;区分主力层与非主力层,主力层则加强,次要层则简化。这样保证了总体资料的质量,减少不必要的繁琐取资料工作量。
3.实现集束勘探要做好技术准备
首先应加强完井电测、简化钻井测试,测井要做好电缆测试(泵抽式取样)、旋转式井壁取心和核磁共振测试的技术准备。
其次,钻井工程借鉴开发生产井优快钻井经验,对初探井简化井身结构,打小井眼,不取心,尽可能保证钻井作业的连续性,提纯钻进时间比例,用集束勘探的办法尽量减少动员费用,在拖航、弃井等环节上提高时效,降低费用,保证稳定的、高质量的泥浆性能,打好优质的规则井眼,创造良好的测井环境。
第三,评价井的测试工作中,要做好直读压力计、多层连作、油管完井等技术准备。
4.集束勘探协调了长期困扰勘探家的三大矛盾
第一,协调了加大勘探工作量与有效控制成本间的矛盾。集束勘探可实现相同的勘探成本下,多打初(预)探井,总体上必然加快勘探进程。如在合同区义务勘探工作量确定的前提下,勘探成本的降低,则意味着抗风险能力的增强。
第二,协调了不同专业间的利益矛盾。长期以来地质家想多取资料——资料越多越好;钻井工程想快——钻完井越快越好;测井公司想省——下井次数越少越好。集束勘探实现了集约性的成本控制,使各专业各得其所。
第三,协调了老石油传统与现实市场经济间理念上的矛盾。在老石油地质家的传统观念中,是取资料越多越好、储量发现越多越好、采收率提得越高越好。把这些观念放在市场经济条件下,都会与勘探成本产生冲突,于是这些观念都变成了相对的、有条件的:资料——在保证不同勘探阶段起码质量要求下,取资料的工作量越少越好;储量发现——在保证勘探资本及时回收条件下越多越好,否则无须及时探明;采收率——在保证现金流和盈利率条件下越高越好,否则宁可要相对较低的采收率;勘探成功率——对油公司来讲,地质成功率毫无意义,油公司只要商业成功率,更关心的是勘探投入的资本化率;储量概念——不能只讲地质储量,对油公司来说更关心可采储量,尤其是可作为公司资产的份额可采储量。
集束勘探是我们由计划经济成功转向市场经济时,在经营理念上发生根本变革的表现。一年来的成功实践,不但在中国海油勘探家中产生了巨大观念上的震动,也影响到许多外国作业者,纷纷吸收或效仿集束勘探方法。集束勘探方法的产生,表明我国企业不仅可以进入国际市场,并且完全可以在市场运作中有所发现,有所发明,有所前进,创造出更好的经济效益。
在2002年中国海洋石油勘探年会上,将集束勘探发展为价值勘探的一部分,这是勘探工作进步的表现。这一新生事物的出现,使公司上市后出现了新情况:结束了国有独资的历史,十分关注投资的收益、储量增长的压力、成本的压力等。如此,必须对过去传统的勘探理念进行重新审视:由过去的地质调查研究型,变为经营油气实物的经营型,要创造经营价值。所以,价值勘探是一种以价值为取向的勘探理念,具体地说,每项工作以是否增加公司或股东的价值,作为决策的依据,即勘探的每个环节,以创造出更多的价值作为决策的出发点,勘探工作将围绕价值中心来进行。这也体现了勘探工作本身是发展的、动态的,在勘探工作不断进展中,随时拓宽、发展勘探方法,以促进海洋石油事业不停顿地、持续发展。
国内外研究现状
2011-2015年中国液化天然气(LNG)行业发展分析及投资前景预测报告 天然气作为清洁能源越来越受到青睐,很多国家都将LNG列为首选燃料,天然气在能源供应中的比例迅速增加。液化天然气正以每年约12%的高速增长,成为全球增长最迅猛的能源行业之一。近年来全球LNG的生产和贸易日趋活跃,LNG已成为稀缺清洁资源,正在成为世界油气工业新的热点。为保证能源供应多元化和改善能源消费结构,一些能源消费大国越来越重视LNG的引进,日本、韩国、美国、欧洲都在大规模兴建LNG接收站。国际大石油公司也纷纷将其新的利润增长点转向LNG业务,LNG将成为石油之后下一个全球争夺的热门能源商品。 尽管全球经济正在经历近70年来最为低迷的时期,但全球LNG市场的远景依然光明。由于减少碳排放的重要性日益增长,天然气已成为优先选择的一种能源。亚洲是目前世界LNG的主要市场,预计对LNG的需求将从1999年的6850万吨、2006年的9796万吨增加到2010年的13390万吨。亚洲主要市场对LNG进口的需求预计将从2006年超过9000万吨提高到2020年的1.49亿吨。 近年来,中国LNG项目发展之快前所未有,需求也迅猛增长。2009年我国生产天然气830亿立方米,与上年相比增长7.7%。石化工业协会的数据显示,2009年我国天然气表观消费量为874.5亿立方米,同比增长11.5%。与国内产量相比,国内天然气供需缺口达40多亿立方米。预计,2010年中国天然气需求将达1100亿立方米,而国内生产能力所能提供的只有900亿立方米。2009年,中国进口液化天然气553.2万吨,增长65.8%,占当年中国液化气进口总量的57.1%,比重较2008年提高了1个百分点。预计2010年中国将进口天然气逾100亿立方米,其中包括约600万吨液化天然气。预计2015年中国LNG进口将超过2000万吨,2020年还会成倍增长。大力发展LNG,减少对石油的依赖,是中国政府的一项重要举措,预计不久的将来,天然气将成为我国在煤和石油之后的第三大能源。
年天然气供需形势分析
1.2.1 元素硫溶解度及沉积运移实验研究现状
(1)元素硫溶解度研究现状
对高含硫天然气中元素硫溶解度的认识是该类气藏开发过程中重要的环节之一。国内外对该问题进行了深入的研究。硫溶解度的研究主要包括实验和理论两个部分,以下为实验部分。
1960年,Kennedy[7]等人研究了硫在不同含量的CH4、CO2和H2S三种气体中的平衡溶解问题。并且首次说明了硫的溶解性能与气体压力、温度和组分有关。在一定温度压力的条件下,其溶解能力大小依次为H2S、CO2、CH4。
1971年,Roof[8]通过实验研究了低温低压条件下硫在硫化氢气体中的溶解度(压力6.8~30.6MPa,温度43.3℃~114℃)。
1976年,为了更好地研究深层气藏的高温高压条件下硫在酸性气体中的溶解度,Swift[9]进行了溶解度实验研究(压力34.5 MPa~138 MPa,温度121℃~204℃)。
1980年和1988年,E.Brunner[10~11]等人将Kennedy等人研究进行推广(压力6.6MPa ~155MPa,温度116℃~213℃),研究了硫在不同比例的CO2、H2S、C1~C4的14个合成酸性气体混合物中的溶解度。
1992年和1993年,P.M.Davis[12]等人将E.Brunner等人的研究成果进行了深入研究(压力7 MPa~55MPa,温度60℃~150℃),将硫在简单多组分中的溶解扩展到实际的酸气组分中。
1993年,谷明星[13~14]等人建立了静态法测定难挥发溶质(固体或液体)在超临界、近临界流体中溶解度的实验装置,针对硫化氢大于50%的富含H2S酸性流体溶解度进行了测试。
2003年,C.Y.Sun[15]在谷明星实验研究的基础上,在室内利用静态实验测试装置完成了元素硫在7个高含硫混合气体(H2S CO2、CH4)中溶解度测定,并建立了能预测和关联硫在高含硫天然气中溶解度的气固热力学模型。
2005年,曾平[16~17]对元素硫在天然气中的溶解度进行了实验研究,并对其机理进行了说明,分析了不同组分对元素硫溶解度的影响,提出混合物中含碳原子数目较多的烃类组分对硫溶解度有着重要的影响。
2009年,杨学锋[18]通过自主设计的元素硫溶解度实验设备,针对Chrasnti[19]和Roberts[20]常系数模型进行了关联性研究,发现Chrasnti l溶解度计算模型更加科学可靠; 而Roberts溶解度模型,由于是根据有限特定的几组数据拟合得到,具有一定的局限性。
由于硫在含硫混合气中溶解度测试具有一定的危险性,故为了更好的得到硫在含硫混合气中的溶解度,国内外学者在理论模型方面也做了很多深入的研究。
1980年和1983年,J.B.Hyne[21~22]等人研究发现随着温度压力的升高,元素硫和硫化氢会生成多硫化氢。反之,随着温度压力的降低,多硫化氢又会分解成为元素硫和硫化氢,从而导致硫沉积。
1982年,Chrastil[19]基于理想溶液理论,提出了一个简化的热力学方程来计算硫的溶解度。该经验公式已经广泛用于超临界流体溶质溶解度的计算。
1989年,R.A.Tamxej[23]等人在对大量实验数据进行拟合的基础上,得到了元素硫在含硫气体中溶解度的预测模型。
1997年,E.Bruce[20]等人利用Brunner[10]和Woll的实验数据,对Chrastil经验公式进行了回归拟合,建立了元素硫在酸性气体中的溶解度经验公式,该公式考虑了温度、压力和气体组分对元素硫溶解度的影响,因为方便应用,故一直被用于预测元素硫在含硫天然气中的溶解度。
1998年,Kunal Karan[24]等人建立一个热动态模型,可用于预测酸气混合气体中硫溶解度,并利用该模型计算了元素硫在硫化氢和高含硫气体混合物中的溶解度。
2003年,C.Y.Sun[15]等人采用与谷明星类似的方法,建立了能够预测和关联元素硫在高含硫天然混合气中溶解度的气固热力学模型。
2006年,杨学锋[25]引入了超临界流体的压缩气体模型,建立了元素硫和高含硫天然气达到气固相平衡时定量计算元素硫溶解度的关联和预测模型。
(2)元素硫沉积运移实验研究现状
随着温度压力的降低,元素硫会从含硫天然气中析出,部分硫颗粒将会沉降,部分硫颗粒则会随储层流体运移。
目前,元素硫沉积实验主要集中在油藏方面[27~29],由于硫化氢的剧毒性,开展高含硫元素硫沉积储层伤害的实验极少。
2000年,Jamal H.Abou-Kassem[30]利用氮气携带升华的元素硫进入碳酸岩岩心,观察和测定了元素硫对岩心的伤害。提出了一种简易的方法来模拟实际高含硫气藏元素硫对储层的伤害,但由于元素硫升华的温度极高,对其实验及数据的可行性值得深入探讨。
2008年,西南油气田分公司勘探开发研究院[31 ]自主研制了模拟实际储层高温高压的条件下,元素硫沉积对储层伤害驱替实验仪器,完成了不同初始压力、温度下元素硫对天然碳酸盐岩岩心渗透率和孔隙度的伤害。
1.2.2 含硫气藏储层改造铁离子伤害研究现状
储层改造作为低渗透油气藏重要的增产措施已经得到了广泛的认可,目前含硫气藏也通常进行酸压改造增产作业。由于含硫气藏涉及元素硫沉积和酸性气体等因素,对其储层改造必要性的探讨还存在空白。
考虑到元素硫沉积和酸性气体的影响,含硫气藏储层改造的核心就是控硫控铁。在处理含硫化氢气井的储层改造问题上,国内外主要集中在控制铁沉积上[32~37]。在酸压作业中,对于控制铁离子沉淀,通常有三种方法:
一是对主体工作液进行研究,采用弱酸体系来控制残酸液的pH值,使得残酸pH值处于一个相对较低的位置,以便于抑制残液中析出含铁的硫化物。
二是采用铁离子络合剂。由于络合剂对高价的金属离子具有较强的亲和力,从而使得溶液中铁离子浓度低于析出沉淀的浓度,从而抑制铁离子沉积的产生。
三是采用还原剂,将溶液中的三价铁离子还原成为二价铁离子,从而达到避免沉淀析出的目的。
2004年,陈红军[38]等人对于含硫化氢气井酸化过程中,硫化铁沉淀预测及抑制剂研究进行了详细的调研和研究,并提出了一套适应含硫气井酸压作业且与之匹配的添加剂,优化了酸液体系的整体性能,其具体表现为铁离子稳定剂、硫化氢吸收剂和控硫剂。
2007年,Jairo Leal[39]等人在分析了在对解除硫化铁沉积过程中可能会出现的问题,提出了一系统有序的方法来对硫化铁沉淀进行移除。
2009年,Tao Chen[40]等人建立了一套新的硫化铁测试方法来评价硫化铁抑制剂的性能。在此基础上,研制了一种新的抑制剂并对硫化铁抑制剂机理进行了说明。
1.2.3 元素硫沉积对储层伤害研究现状
为了研究地层条件下元素硫沉积对储层的伤害,国内外学者分别建立了考虑元素硫伤害的含硫气藏伤害模型,分析元素硫沉积对储层参数及产能的影响。
1966年,C.H.Kuo[41]建立流体流动数学模型,该模型能够描述多孔介质中固相沉积。该模型假设初始状态含硫天然气饱和溶解元素硫。
1972年,C.H.Kuo[42]将硫沉积模型引入,在黑油模型的基础上,建立元素硫沉积的储层伤害数学模型,该模型考虑了硫溶解度的变化和硫沉积对渗透率和孔隙度的影响。该模型能够模拟均质气藏一维径向流动情况下,采气速度、井距和井筒半径对硫沉积的影响。
1980年,J.B.Hyne[21]等人通过统计学原理,分析了100多口含硫气井的元素硫沉积问题,分析了混合物中不同碳原子数、CO2、硫化氢含量对元素硫沉积的影响。
1997年,E.Boberts[20]在等温稳态理想流动的条件下,研究了酸性气井中元素硫沉积对流人动态的影响,建立了考虑元素硫沉积储层伤害模型,分析了不同时间,不同径向距离处元素硫饱和度的分布。发现硫的聚集速度与径向距离平方成反比,径向距离小,元素硫沉降距离的越快。同时还考虑表皮的影响,表皮越小,硫的聚集速度越小,但该模型假设元素硫析出就地沉降,没有考虑元素硫运移。
1997年,王琛[43]在Roberts建立的理论基础上,研究了硫沉积对气井产能的影响及各因素对硫沉积的影响。
2001年,Faruk Civan[44]将延迟效应引入到元素硫沉积里面,考虑元素硫动态沉积,即元素硫析出后不会就地沉降,而是运移一段时间或位移后再沉降。但并没有说明元素硫何时沉降,运移多长时间和位移。
2002年,Nicholas Hands[45]等建立了天然裂缝性含硫气藏硫沉积预测解析模型,该模型考虑了温度和近井地带的气流临界流速的影响,对元素硫在近井地带的分布进行了分区和详细地研究,并给出了相应的井底除硫时间,但对于元素硫颗粒临界流速计算并没有给出具体计算方法。
2004年,杨满平[46]考虑非达西渗流的影响,建立了高含硫气藏元素硫沉积模型。该模型在完善硫沉积伤害模型基础上,对比了考虑非达西和达西流动下,不同径向距离,不同时间元素硫饱和度随时间的变化关系,同时还分析了产能对硫颗粒沉积堵塞的影响。
2005年,曾平[47]就高含硫气藏渗流规律进行了研究,得到孔隙度,渗透率随时间的变化关系,进一步完善了考虑非达西影响的元素硫沉积伤害模型。
2006年,杨学锋[48]在Faruk Civan建立的模型基础上,考虑元素硫沉积的延迟效应,完善了元素硫动态沉积预测模型。
2006年,H.Mei[49]等人在Roberts建立伤害模型基础上,根据实际井参数,建立了无阻流量与渗透率和储层厚度之间的关系。
2006年,Du Zhi-Ming[50]等人建立了裂缝性气藏气液固三相耦合数学模型,并利用Roberts实例井数据进行计算,同时进行了结果对比分析。
2006年,Guo Xiao[51]等人将气液固三相耦合模型与硫沉积实验相对比,分析了流速,初始硫浓度和岩心渗透率对元素硫沉积的影响。
2007年,Guo Xiao[52]等人基于组分模型和相平衡原理建立了气液固三相数学模型,该模型可用于预测元素硫沉积,并提出需要进行储层解堵时间。
1.2.4 考虑元素硫沉积的产能方程及物质平衡方程研究现状
由于压力降最快的地方在近井地带,导致元素硫析出最快的地方聚集在近井地带,从而使得常规的产能方程需要进一步考虑元素硫沉积的影响。含硫气藏开发过程中元素硫沉积而导致试井曲线发生变化,对此学者们也进行了相应的研究。
2005年,李成勇[53]等人进行了高含硫气藏解释方法研究,建立了高含硫气藏两区复合试井模型,并用Stehfest反演算法对井底压力响应典型曲线进行了计算,分析了污染半径和流度比对井底压力动态的影响。
2007年,段永刚[54]等人建立了基于含硫气藏与井筒耦合的非稳态产能预测新方法,该方法为没有试采资料的气井合理配产提供了一种方法。
2008年,张烈辉[55]等人基于渗流力学相关理论,对高含硫气藏的渗流模式进行了分析,建立了考虑附加表皮的复合渗流模型与产能试井解释数学模型。
2009年,晏中平[56]等人在现代试井解释方法和油气渗流理论基础上,建立了考虑含硫气井硫污染区和未污染区两区双孔介质复合试井解释数学模型,并利用Stehfest反演算法对井底压力响应典型曲线进行了计算,同时完成了多参数对井底压力的敏感性分析。
随着高含硫气藏的开发,储层压力会不断降低,析出的元素硫将会占据储层部分孔隙空间,使得在建立含硫气藏物质平衡方程的时候,体积平衡方程发生了变化。
1936年,R.J.Schilthuis[57]根据物质平衡原理首先建立了油藏的物质平衡方程式,因为该方法需要的相关地质及流体生产数据较少,同时计算方法相对简单,故一直在油藏工程中得到广泛使用。
国内的陈元千[58~60]等人在物质平衡原理的基础上建立了气藏的物质平衡方程,并完善了不同类型的气藏物质平衡方程式。
在凝析气藏物质平衡方程式的问题上,国内的马永详[61~62]利用摩尔平衡原理对凝析气藏物质平衡方程进行了研讨。
2006年,张勇[63]等人给出了高含硫气藏物质平衡方程的推导,该模型考虑了元素硫沉积的影响,但仅仅是基于体积平衡原理,没有考虑元素硫的析出会导致混合天然气密度发生变化。
2008年,卞小强[64]考虑了元素硫析出后,会使得天然气密度发生变化,必须使用质量平衡原理来建立含硫气藏物质平衡方程,故其利用摩尔平衡原理建立了气藏物质平衡方程,并进行了实例计算,但在建立物质平衡时,由于对元素硫产生的机理认识不足,使得摩尔平衡原理建立的方程求解具有一定难度。
相干体技术在天然气水合物解释中的应用及研究
一、国内外资源状况
(一)世界天然气资源状况
截至2009年底,世界天然气剩余探明储量为187.49万亿立方米(表1),比上年增长1.0%。按当前开采水平,世界天然气剩余储量可供开采年限为62.8年。资源主要集中在俄罗斯和中东地区。按地区来说,中东是世界上天然气资源最丰富的地区,拥有76.2万亿立方米,占世界的40.6%。从国度来看,俄罗斯天然气探明储量为44.38万亿立方米,占世界储量的23.7%,居世界第一位;伊朗天然气探明储量为29.61万亿立方米,占世界天然气储量的15.8%,居第二位;卡塔尔的天然气储量为25.37万亿立方米,占世界储量的13.5%,排名第三位。以上三国占世界天然气总储量的53.0%(图1)。同时,根据2009年度各国生产量计算,俄罗斯的剩余可采年限为84.1年,是主要天然气资源国中剩余可采年限最长的。已有数据显示,目前世界天然气储量基本保持增长态势,但增幅不大,近10年的平均年增幅不超过3.0%。
图1 2009年世界天然气探明可采储量分布
表1 2009年世界主要国家天然气资源储量分布
资料来源:BP Statistical Review of World Energy,2010,7
(二)我国天然气资源状况
截至2009年底,我国天然气剩余技术可采储量为3.7万亿立方米(其中,剩余经济可采储量为2.8万亿立方米),比上年增长8.8%。天然气采出量840.7亿立方米,新增探明技术可采储量3861.6亿立方米。新增探明技术可采储量主要来源于中石油长庆苏里格(1127亿立方米)、中石油塔里木塔中Ⅰ号(888亿立方米)、中石油西南合川(501亿立方米)、中石化西南新场(484亿立方米)、中海油深圳荔湾3-1(344亿立方米)和中石化华北公司大牛地(111亿立方米)。近年来,我国天然气剩余技术可采储量保持较稳定的增长态势,2009年度比上年增长8.8%。但我国天然气储量具有分布不均匀、品质不理想的特点,勘探开发难度较大,生产成本较高(表2;图2)。
2009年度全国主要矿产品供需形势分析研究
图2 2009年我国天然气剩余经济可采储量分布表2 2009年我国天然气储量分布单位:亿立方米
图3 2000~2009年我国天然气剩余(技术)可采储量变化
我国天然气资源开发在近几年一直处于发展壮大的过程中。天然气资源的勘探投入逐年增加,并不断发现新的资源储量,2009年天然气剩余技术可采储量比上年增长8.8%(图3)。从现有的情况看,未来一段时期内,我国天然气资源的储量还会进一步增加。一方面,我国天然气资源的勘查程度低,还有很大的勘查前景;另一方面,我国能源需求的潜力巨大,而且在油气资源体系内部,石油资源缺口大,天然气在很大程度上可以弥补这个缺口,同时天然气作为清洁能源,其本身具有很好的开发潜力。
二、国内外生产状况
(一)世界天然气生产状况
受全球金融危机影响,2009年世界天然气产量出现下降趋势,总产量约为2.99万亿立方米,同比减少2.4%。美国和俄罗斯仍然是主要天然气生产国,2009年两国的天然气产量占世界总量的37.5%。但俄罗斯在2009年度的产量出现较大幅度的下降,高达12.3%,而美国仍有3.3%的上涨幅度。主要原因是俄罗斯是天然气输出大户,境外需求占其总需求的比重较大,因受全球经济危机影响,境外需求乏力,导致国内产量下滑。而美国的天然气供应部分需要依靠进口,所以国内天然气产量受影响较小。另外,在产量排名前十位的国家中,增长幅度较大的国家是伊朗和卡塔尔,分别达到12.8%和16.0%(表3)。
表3 2004~2009年世界天然气生产情况
资料来源:BP Statistical Review of World Energy,2010
从区域上看,中东和亚太地区仍为主要增长区域,2009年度中东地区天然气产量达到4072亿立方米,比上年增长6.5%;亚太地区产量为4384亿立方米,比上年增长5.2%,增长点主要来源于印度和澳大利亚,两国分别增长28.9%和11.0%。
(二)我国天然气生产状况
我国天然气产量一直保持增长的势头,2009年我国天然气产量达到830亿立方米(表4;图4),同比增长7.7%。从地区分布看,我国天然气产量主要集中在西部地区。数据显示,中国石油集团的长庆、塔里木和西南三大气田(企业)为天然气主要供应地,合计占全国总量的62.7%,而且国内天然气产量80%以上集中在中国石油集团,2009年度中国石油集团天然气产量共有683.20亿立方米,比上年增长10.7%。另外,中国石化集团、中国海洋石油总公司各有83.28亿立方米和74.77亿立方米的产量。
表4 2004~2009年我国天然气生产情况
资料来源:中国石油天然气集团公司;中国石油化工集团公司;中国海洋石油总公司;中国石油和化学工业协会
注:“全国合计”数据来源于国家统计局,统计口径略有出入。
图4 2000~2009年我国天然气生产和消费变化
从近几年天然气产量增长趋势看,我国各地区表现不一。在2009年,三大产地之一的长庆天然气产量,比上年增长31.8%,连续几年保持高增长态势;另外塔里木气田也呈现较好的增长态势,但2009年的增长幅度放缓,只有4.1%;排名第三位的西南气田,近几年产量基本保持稳定,2009年有小幅增长(1.3%)。而其他生产地区产量相对较小,部分气田(企业)已呈逐年减产的态势。从全国的产量变化趋势上观察,近几年我国天然气产量增幅在逐年放缓,已从2005年的21.9%下降到2009年的7.71%。
三、国内外消费状况
(一)世界天然气消费状况
2009年,世界天然气消费量达到29404亿立方米,同比下降2.3%。在此前的2001~2008年中,世界天然气消费量保持增长的态势,平均增幅2.78%。消费量最大的国家仍为美国,2009年消费天然气6466亿立方米,比上年略有下降。俄罗斯作为天然气生产大国,其本国消费也有3897亿立方米,居世界第二位。排名第三位的国家是伊朗,2009年消费量为1317亿立方米,增长幅度较大,达10.4%(表5)。
表5 近年世界天然气消费情况
续表
资料来源:BP Statistical Review of World Energy,2010
从区域上看,欧亚大陆和北美是全球两个主要天然气消费地区,2009年各占全球消费总量的35.9%和27.8%。但因全球金融危机影响,比上年度都有不同程度的下降(分别下降6.8%和1.2%)。而亚太和中东地区仍保持增长势头,比上年分别增长了3.4%和4.4%。
(二)我国天然气消费状况
2009年,我国天然气表观消费量为874亿立方米,增长8.3%。加上国内经济继续保持稳健的步伐,能源消费需求也将不断攀升,作为能源发展的一个重要组成部分,天然气消费量也将进一步增加。“九五”期间,天然气的消费增长量是101.7亿立方米,年均增长率为9.57%;“十五”期间消费增长量已高达246.4亿立方米,年均增长率高达12.91%。统计数据显示,2008年我国天然气消费主要集中在工业领域,占全部消费量的65.4%,这个巨大的消费量主要由其下的制造行业产生,达到337.92亿立方米。其次是采掘业,达到109.67亿立方米,但从发展趋势看,采掘业在消费中所占比重已在减少。除工业部门外,生活消费领域也有170.12亿立方米的消费量,同比出现很大幅度增长(27.54%)(表6)。从天然气消费领域的比重上分析得出,除建筑业消费比重在降低,其他领域的消费量都在增长。从消费地区结构上看,我国天然气消费以产地消费为主,主要集中在西南、东北、西北地区,即四川、黑龙江、辽宁、新疆,占全国消费量的80%以上。目前,随着管道建设的开展,北京、天津、重庆、成都、沈阳、郑州和西安等许多大中城市都用上了管道天然气。
表6 2003~2008年我国天然气消费结构单位:亿立方米
资料来源:中国统计年鉴,2003~2008
人均消费量稳步提高,但消费量依然很少,2008年,人均消费量为12.8立方米(中国统计年鉴),比上年增长17.43%。同时,我国天然气总消费量在世界上所占份额也很少,与我国众多的人口极不相称。2009年,我国天然气消费量占世界天然气总消费量的3.0%(BP数据),有进一步上升的空间。
四、国内外贸易状况
(一)国际天然气贸易状况
2009年,全球天然气贸易创历史新高,贸易总量高达8765.4亿立方米,管道天然气和LNG(液化天然气)贸易量分别为6337.7亿立方米和2427.7亿立方米。LNG贸易量创历史新高,其中亚洲增长潜力最大,贸易量达1522.7亿立方米。管道天然气贸易依然以欧洲地区为主,2009年其贸易量为4443.8亿立方米,占管道天然气贸易总量的70.1%。
2009年,受世界经济不景气影响,排名世界前三位的LNG进口国日本、韩国和西班牙,贸易量都有6.0%左右的下降幅度,但其合计进口量仍超过全球进口总量的60%。美国经过2008年的低谷后,LNG进口量开始回升。增长势头较好的国家是印度、中国和英国,中国和印度作为新兴经济体,近年对外能源的依赖程度越来越高,未来还有增长的势头;英国作为西欧大经济体,国内能源供应不足,能源进口的压力长期存在,发展LNG进口可能是其一个重要选择(表7)。
表7 2004~2009年世界LNG主要进口/入境国家和地区
资料来源:BP Statistical Review of World Energy,2005~2010
在管道天然气贸易进口方面,2009年进口量最多的是美国、德国和意大利,分别达到930.3亿立方米、888.2亿立方米和664.1亿立方米,三个国家合计占全球管道天然气进口量的39%。另外,法国、俄罗斯和英国都有300亿立方米以上的进口量。年度增幅最大的国家是加拿大和阿联酋,分别达到24.8%和12.0%。在2009年,管道天然气进口量出现较大幅度下降的国家是美国、意大利、英国、土耳其和比利时,降幅都在10%以上,其中,比利时下降幅度高达17.8%(表8)。
表8 2004~2009年世界管道天然气主要进口国家
资料来源:BP Statistical Review of World Energy,2005~2010
管道天然气出口方面,俄罗斯依然是最大的出口国,在2009年达到1764.8亿立方米,比上年增长14.3%,占管道天然气出口总量的27.8%。其次是挪威和加拿大,分别有957.2亿立方米和922.4亿立方米的管道天然气出口量,加拿大近年来出口量一直在1000亿立方米左右,2009年比上年下降10.6%。而挪威的出口量一直保持增长态势。另外,2009年荷兰、阿尔及利亚和美国分别有496.7亿立方米、317.7亿立方米和294.6亿立方米的管道天然气出口量,分别排在世界的第五、第六、第七位。土库曼斯坦正在实施天然气出口多元化战略,出口势头发展较好,在2009年度管道天然气出口已达到167.3亿立方米,增幅较大(表9)。
在LNG出口方面,2009年全球出口总量是2427.7亿立方米,与管道天然气出口趋势一样,LNG的全球出口量一直保持增长的态势,年度增幅达7.2%。在2009年世界LNG出口中,卡塔尔的出口量最大,达到494.4亿立方米,增幅也最大,高达24.6%。其次是马来西亚和印度尼西亚,LNG出口量分别达到295.3亿立方米和260.0亿立方米,分别居二、三位,但是从出口发展趋势看,两国未来增长空间较小,印度尼西亚基本上呈现逐年下降的趋势。另外,受全球金融危机的影响,部分LNG出口国受到较大的影响,其中表现较为明显的是尼日利亚,降幅高达22.2%(表10)。
表9 2004~2009年世界管道天然气主要出口国家
资料来源:BP Statistical Review of World Energy,2005~2010
表10 近年世界LNG主要出口国家
资料来源:BP Statistical Review of World Energy,2005~2010
(二)国内天然气进出口贸易状况
2009年,石油气及其他烃类气(简称液化石油气,下同)进口量达969万吨,比2008年增长63.0%;进口金额为约34亿美元,比上年增长16.4%;减去出口317万吨,2009年我国液化石油气净进口652万吨。我国石油气主要以进口为主,在近十几年,只有1997年出现了净进负值,主要是由于1996年经济泡沫的影响,此后几年中净进口量总体上保持增长的势头(表11)。近几年我国LNG进口方面也有了新的发展。2006年我国首批进口的液化天然气进入广东省的液化天然气接收终端;2007年广东LNG项目正式投入商业运营,该年我国进口LNG291万吨,是2006年进口量的3倍多,其中248万吨为澳大利亚西北大陆架项目的长期合同供货,约占进口总量的85%,平均价格为206.16美元/吨。2009年我国液化天然气进口量达553万吨,同比增长65.8%,进口金额为12.87亿美元,同比增长38.2%。
据预测,到2020年,我国天然气供应中有49%来自进口,其中39%将来自液化天然气进口,10%来自俄罗斯和中亚国家的管道天然气进口。
出口方面,2009年,我国天然气出口232.5万吨,比上年下降1.1%,出口金额近5亿美元,同比增长4.3%。
表11 2006~2009年我国石油气进出口情况
资料来源:中国海关统计年鉴,2006~2009从进口国度上看,我国2009年石油气进口的主要来源国是澳大利亚、伊朗、卡塔尔、马来西亚和阿联酋,从以上5个国家进口的量占进口总量的77.5%(表12);澳大利亚是我国石油气资源进口的主要来源地,进口量达到385万吨,占总进口量的39.7%,比上年增长36.0%;卡塔尔是我国石油气进口增长幅度最大的国家,2009年的进口量比上年增长323%;俄罗斯则实现了零的突破,未来增长潜力较大;科威特则出现逐年下降的态势,2009年从其进口26万吨,比上年减少49.0%。
从进口的区域看,除了澳大利亚这个最大进口源以外,其他具有重要地位的进口源主要集中在中东地区和非洲的阿尔及利亚等地,亚洲的主要进口对象为印度尼西亚。从进口的对外依存度上评估,澳大利亚所占比例过重,有必要进一步扩大其他地区的进口量,以降低对外进口集中度,降低资源供应风险。根据目前的进口区域分布情况,我国应加强与这些地区的政治外交,扩大与中东和中亚国家的油气资源合作,并结合国内LNG接收站的建设发展,逐步分散进口区域,降低风险。
表12 2006~2009年我国石油气进口主要来源
资料来源:中国海关统计年鉴,2006~2009
五、天然气价格走势分析
1990~2009年,世界LNG价格总体上呈上升态势(图5)。2008年,国际天然气价格达到历史最高水平。之后,受金融危机的影响,全球天然气贸易受到冲击,价格回落,回归到理性水平。以日本LNG到岸价格为例,2009年为9.06美元/百万英热单位。随着2010年全球经济回暖,未来LNG进口价格将会保持增长势头。
图5 ~2009年日本LNG到岸价格
2009年,管道天然气价格也出现较大幅度的回落,全球四大天然气交易中心统计数据显示,其交易价格均出现不同程度的下降,其中,加拿大的亚伯达和美国的亨利中心价格下降幅度最大,基本回到2003年的水平。相比之下,欧盟的到岸价格下降幅度稍小些,主要是因为欧盟地区是天然气进口大户,缺口较大,能在一定程度上支撑价格基本面(图6)。
图6 ~2009年世界天然气价格
我国天然气行业现行的定价政策以成本加成法为基础。随着天然气行业的不断发展,根据天然气资源供不应求的现状和市场结构的变化,天然气定价政策几经调整,基本呈现出在政府监管下市场定价的基本特征,从考虑天然气生产企业成本水平,又适当考虑市场用户承受能力的角度出发,我国天然气行业现行定价政策被概括表述为:以成本加成法为基础,适当考虑市场需求的定价方法,出厂价为政府定价,天然气管道输送价格为政府指导价并采取老线老价、新线新价的定价政策。为了改变现有价格体系,政府已着手开展天然气定价改革,改革方向是与国际接轨。
六、结论
(一)世界天然气供需趋势
世界天然气的供应,从20世纪90年代至今,基本保持较为平稳的增长趋势。全球能源需求量的不断扩大、天然气资源探明储量的不断增加,又给天然气供应市场的发展带来了新机遇。1990年,世界天然气供应量只有19918亿立方米,到2008年供应量已达到30607亿立方米,增长53.7%,虽然2009年受金融危机影响,供应量有所下滑,但未来仍呈增长态势。同时,在当前石油能源供应紧张的形势下,天然气的勘探与开发力度不断加大,进一步促使天然气在21世纪充当重要能源角色,使其供应量持续增长。
在需求方面,随着全球能源需求量的不断扩大,天然气因其具有洁净、环保等优势,需求量一直保持稳步增长,成为能源消费结构中的重要角色。1990年,世界天然气需求量只有19817亿立方米,到2009年已达到29403亿立方米。
在供需平衡上,天然气一直较为平衡,例如,2009年世界天然气有466亿立方米富余量。预计未来几年内,天然气的供需依然能保持平衡。
(二)我国天然气供需趋势
近几年,我国天然气的供应能力有所加强,天然气的生产量和进口量都在不断增加,2001~2009年,供应量年均增长率达到13.34%,增长势头较好。在需求方面,我国天然气近几年保持不断增长的态势,2001~2009年的年均增长率达到15.24%,2009年达到880亿立方米。
从近10年的进出口情况看,我国的天然气净进口量在不断扩大,进口方式有了扩充,特别是LNG进口有了较快的发展,2006年,LNG进口进入了一个新的纪元,与境外合作进入新的阶段,2009年度我国LNG进口553万吨,同比增长65.8%。管道天然气进口也取得了突破,2009年12月14日,我国首条跨国天然气管道———中亚天然气管道投产,引自土库曼斯坦等国的天然气将达300亿立方米/年。
天然气消费区域继续扩大。截至2009年底,我国已建成的天然气管道长度达3.8万千米,初步形成了以西气东输、川气东送、西气东输二线(西段)以及陕京线、忠武线等管道为骨干,兰银线、淮武线、冀宁线为联络线的国家级基干输气管网;同时,江苏LNG和大连LNG项目进展顺利,浙江LNG项目获国家核准,进口LNG资源不断落实,形成了天然气资源供应的新格局,天然气消费市场扩展到全国30个省(自治区、直辖市)、200多个地级及以上城市。
从未来的能源消费结构及发展趋势看,我国天然气依靠本国生产供应的压力较大,必须结合进口及境外开采等方式,来保障我国天然气的供应平衡与市场稳定。从进口的源头与方式上看,我国在近几年有了新的突破,管道进口方面,与俄罗斯和中亚等国有了新的协议与合作,LNG进口方面,沿海地区接收站点建设步伐较快,发展势头良好,相信在未来的能源供应格局上可以起到促进全局合理化的作用,一方面拓宽沿海城市的资源供应方式,另一方面缓解远途管道供应的压力。
(余良晖)
南海北部海域天然气水合物成矿区游离气分布特征研究1
沙志彬1,2 张光学2 张明2 梁金强2
(1.中国地质大学(武汉)武汉 430074 2.广州海洋地质调查局 广州 510760)
基金项目:国家高技术研究发展计划课题(编号:2005AA611050)资助。
第一作者简介:沙志彬(1972.4—),男,高级工程师,主要从事石油地质和天然气水合物的研究。
摘要 在天然气水合物的地震资料解释过程中,常规(叠加和偏移)地震剖面上难以识别天然气水合物赋存区域。通过近年的实践,认为相干体数据及切片能够较好地揭示天然气水合物的地球物理异常特征,从而给识别天然气水合物和划分其赋存区域提供有力的证据,增加了一种可用于天然气水合物的检测技术。
关键词 天然气水合物 相干体 应用 研究
1 前言
相干体处理解释技术在油气勘探与开发项目的研究中已经得到广泛的应用,为解决复杂地区地质情况和日益增多的地震数据量等问题起到了重要作用[1]。它不仅提高了地震资料解释的效率和精度,使三维地震资料得到充分应用,同时能够很好地突出数据的不连续性,快速准确的识别断层、特殊岩性体及地层沉积特征,直接对目标体和沉积层进行直观和精细的描述。相干体处理解释技术已经成为三维地震资料解释中不可缺少的技术方法[2]。
2 相干性的基本原理
由震源激发产生的地震子波,在向下传播的过程中,遇到波阻抗分界面,发生反射和透射,形成地震波。地震波到达测线接收点,视速度不变,或者只沿测线方向有缓慢变化。而测线布置的观测点相距不远,满足空间采样定理,因此同一个相位在相邻地震道上的到达时间也是相近的,每一道记录下来的振动图是相近的,并且会一个个套在一起,形成一条平滑的有一定长度的同相轴,这个特点叫做相干性。相干技术就是从相邻地震道相互之间的相干性出发,给出一定量描述。对于三维地震数据体,通过对主测线和联络测线方向计算某一时间域内波的相似性,可获得三维地震相干体,因此相干体是指三维数据相干性的一种三维数据体[3]。
当地下目的层存在断层和地层不连续性变化时,在局部一些地震道上会表现出与相邻地震道不同的反射特征,因而导致道与道之间相关性方面的极不连续性,即断层所产生的地震错动,会在相应道的相关曲线中出现极高的不相关特性[4](图1)。利用这一原理,通过对三维数据体的不连续性进行分析,便可识别构造和断层的分布,使解释人员在解释之前就能获得研究区概略的构造几何形态及断层分布情况。充分利用三维地震数据体原已存在的空间分布信息,能够减少复杂情况人为因素造成的误差及由此而产生的多解性。
图1 断层引起的波形变化示意图
Fig.1 Sketch map of wavelet movement by the fault
3 相干性的计算方法
自相干性的概念及应用方法提出以来相干算法本身在不断发展。大致分为三种类型:第一代算法C1,即归一化互相关,采用三道相干处理,对于高品质的资料具有很好的检测效果,分辨率也最高;第二代算法C2,即任意多道相似性算法,采用多道相干处理,其分析结果分辨率稍低,但抗噪能力较强;第三代算法C3,亦称作特征构造,它把多道地震数据组成协方差矩阵,应用多道特征分解技术求得多道数据之间的相关性[5~7]。
目前常用软件中相干性算法是能量归一化后的互相关计算,属于第一代算法C1。
首先定义纵测线上t时刻、道位置在(xi+yi)和(”i+l,yi)与地震道u之间延迟为l的互相关系数
南海地质研究.2007
式中2ω为相关时窗的时间长度。
再定义横测线上t时刻、道位置在(xi,yi)和(xi+l,yi)与数据道延迟为m的互相关系数为
南海地质研究.2007
把上面纵测线(l延迟)和横测线(m延迟)的相关系数组合起来就得到相关系数ρxy的三维估计:
南海地质研究.2007
式中:masρx(t,l,xi,yi)和maxρy(t,m,xi,yi)分别表示时移为l和m时,ρx和ρy为最大值。对于高质量的地震数据,时移l和m可分别近似计算出每道在”和y方向上的视时间倾角。第一代算法是先计算主测线、联络测线方向的相关系数,最后合成主联方向相关系数。其优点是计算量小,易于实现。缺点是受资料限制较大,时窗大,抗噪性差。
第二代算法,即C2算法,可对任意道数进行相似分析,估计其相干性。先定义一个以τ时刻为中心的j道椭圆或矩形分析时窗,在时窗内取j道相邻地震数据u,如果分析点坐标轴为(”,y)则定义相似系数为δ(τ,p,q):
南海地质研究.2007
式中:p和q分别表示”,y方向上的视倾角,上标H表示希尔伯特变换或地震道u的正交分量。若时窗取[-K,K],则平均相似系数为
南海地质研究.2007
式中:Δt为采样时间间隔。第二代算法对任意多道地震数据计算相干,基于水平切片或层位上一定时窗内计算。其优点是对地震资料的质量限制不严,抗噪性强。利用可变时窗,即用一个适当大小的分析窗口,能够较好地解决提高分辨率和提高信噪比之间的矛盾。因此,该算法具有较好的适用性和分辨率,而且具有相当快的计算速度,缺点是不能正确反映地层倾角变化。
第三代算法,即C3相干算法是用基于相似的相干算法对任意多道地震数据进行相干计算。该方法是借助协方差矩阵C来实现的。设λj(j=1,2,L,J)是协方差矩阵C的第j个特征值,其中λ1是其最大的特征值。C3相干算法的计算公式为
南海地质研究.2007
第三代算法以多道或多个子体为对象进行道比较和相似性计算,同时进行基于层位的倾角和方位角估计,从常规数据的纵测线地震显示上估计真倾角最大值来定义离散视倾角范围。通常当地层具有走向和倾向多边特征时,如盐底辟、前积三角洲,火山岩地层等,计算出独立的相干数据体、倾角数据体、方位角数据体,利用HLS(色调、光亮度、饱和度)彩色模型显示相干、倾角、方位角多个地震属性[6]。
4 相干体参数的选择
图2 相干道数示意图
Fig.2 Sketch map of the number of coherent channel
相干模式的选择有两个问题要解决,一是选取多少道参与相干计算最为合适,一是相干时窗大小的选择。针对第一个问题,选用不同的数据做了相关试验,分析认为:选取的道数多少应与地质异常体的大小有密切关系。如果选取道数太多,就无法发现小的地质异常体,且定位不准确;如果选取的道数太少,受地震数据体噪声的影响就很大,以至于影响正常解释工作。一般的,相干道数选择包括线性3道、正交3道、正交5道、正交9道(图2)。通过试算可知,参与计算的道数越多,平均效应越大,对断层的分辨率反而会降低;相反,相干道数少,就会提高断层、特别是对小断层的分辨率。因而在计算地震相干数据体时应根据不同研究目标来选择计算的道数[1~3]。
相干时窗的大小由解释员根据地震反射波的视周期T而定,通常取T/2~3T/2。当计算的相干时窗小于T/2时,由于相干时窗小、视野窄,看不到一个完整的波峰或波谷,据此计算出的不相干数据带反映噪声的几率比反映小断层的几率大;当计算的相干时窗大于3T/2时,由于相干时窗大,可以看到多个地震反射同相轴,据此计算出的不相干数据带反映同相轴连续的几率比反映断层的几率大[3,4]。可见相干时窗取得太大与太小都会降低对断层的分辨能力。通过多次对比试验,认为采用线性3道、时窗32ms计算得到的地震相干数据体有利于开展天然气水合物的解释工作[6,7]。
5 相干算法的试验与结论
2005和2006年我局先后在南海北部陆坡区神狐海域研究区进行准三维采集,地震数据质量较以前有较大提高,定位精确,具有较高的信噪比和分辨率。结合该研究区的构造背景,分别应用三代相干算法对神狐研究区地震数据进行相干计算,结果见图3。图3a,图3b,图3c分别是用C1,C2,C3三代算法计算出的相干体水平切片,白色代表相干性高,黑色代表相干性低。水平切片上黑色窄带反映相干性很低的断层。从图3a,图3b,图3c三幅图中都可以看出本区域断层比较发育,断层走向以东西向为主。比较三幅图,图3a中,不仅上部和下部的大断层清晰可见,中部还可以分辨出南北方向的细小断层,而在图3b和图3c中此处的细小断层均不可识别。因此,对于该研究区的地震资料,采用第一代相干算法计算得到的相干数据体分辨率较高[6,7]。
通过试验分析得出如下结论:相干算法的选择综合考虑参与计算的研究区地震资料的质量及研究区内的构造特征。若研究区地震数据信噪比较高,应用第一代相干算法得到的相干数据体分辨率最高,利于识别小断层;若地震资料信噪比稍低则应用第二代算法可得到分辨率较高相干数据体;对于构造变化复杂、地层倾角较大的研究区要选用第三代算法才能正确反映地层倾角的变化[3,4]。
6 天然气水合物的相干性分析
通过对三维数据体的各种逻辑关系和物理属性的分析研究,认为地震三维数据体的不相关性主要反应断层及岩性变化;相关性主要反映岩性的均一性和地层的连续性。据此进行相干体解释时,高连续性数据对应均一岩性体和连续的地层;中等连续性数据对应层序特征;窄条带低连续对应断层、岩性的变化或特殊岩性的边界;宽条带低连续对应数据质量不好或无反射层位[3]。
由于特殊地质体和周围地层的地震反射有着不同的相干性,所以特殊岩性体在相干切片上能清楚地反映出来。应用相干数据可以确定某些岩性异常体的边界,为这些异常体的圈定提供辅助手段。目前,三维相干技术的发展比较成熟,一些学者[3,4]利用相干技术,预测了火成岩、碳酸盐岩等特殊岩性体的分布范围,实现特殊岩性体的准确成像,取得了良好的效果。但现在还很少应用相干性分析天然气水合物这种特殊岩性体[3~5]。
图3 三代相干算法效果比较图
Fig.3 The map of the effect of three kinds of coherent calculation methods
在充分研究前人工作的基础上,依据天然气水合物的地球物理特征,对叠前偏移数据体进行相干处理,得到相干体数据,分析总结水合物在相干数据体上的响应[1~3]。研究发现:排除构造因素,通过用其他地震检测手段识别出的含水合物的地层在相干体上表现出很高的相干性,与周围地层相干性差异明显;同样,含水合物地层在相干体切片上表现出高相干性的属性特征。分析认为这种现象可能是因为地层填充水合物导致地层岩性相对均一,相邻地震道反射相似性高[8~10]。
以神狐海域研究区为例,250线地震剖面上(图4(a)),可以看到同一沉积地层(A区域和B区域)同相轴连续性好,两者之间没有明显的差异;在相干剖面上(图4(b))却表现出相干性差异,没有水合物充填区域为中相干性(B区域),而有水合物充填区域为强相干性(A区域)。因此,利用相干体技术可以圈定天然气水合物的分布范围[6,7]。
图4 神狐海域研究区250线地震剖面(a)与相干剖面(b)
Fig.4 The Seismic and coherent profi1e of Line 250 in the study of Shenhu offshore
此外,对神狐海域研究区的整个相干数据体进行分析,自海底以下间隔固定时窗(时窗小于识别矿体厚度)分别对两个BSR区域提取相干切片。分析发现在东南BSR区块的2000ms相干体切片上(图5(a)),230-320线,400-600道范围内,有一亮白色团块(在相干体切片中白色代表高相干性,黑色代表低相干性);在相同区域,2050ms和2100ms相干切片上仍可以清楚地分辨出两块高相干性团块(图5(b),5(c))。通过与BSR分布图对比发现,该区域与BSR的分布范围基本吻合,处于BSR上的空白带内,由此推测高相干性可能是含天然气水合物所致;同样,在西北BSR区块的1700ms到1900ms相干体切片上亦表现出高相干性。因此,可以利用相干体技术推测水合物在此区域是否赋存,并且可以大致圈定水合物的分布范围[6,7]。
在相干体数据的应用中,相干性是对地震道进行去同存异,突出断层、特殊岩性体等地质现象,而影响地震道相干性因素复杂,地震道间相似程度往往受多种因素影响。因此,在水合物矿体的预测中,必须综合利用相干体与其他分析检测技术(AVO反演、波阻抗反演、瞬时属性剖面、能量半衰时剖面等),去伪存真,共同确定水合物矿体的展布[11~15]。
图5 神狐海域研究区东南BSR区块相干体切片
Fig.5 The slice of coherent profile of southeastern BSR area in the study of Shenhu offshore
7 认识与讨论
总结本文得出以下几点认识与讨论:
1)本文尝试运用相干体技术来识别天然气水合物的地球物理特征,形成了一项可用于天然气水合物的检测技术;
2)实践证明可以利用相干体技术推测水合物在此区域是否赋存,并且可以大致圈定水合物的分布范围;
3)针对天然气水合物进行的相干体研究尚处于初级阶段,需要进一步的研究及完善;
4)相干性数据受多种因素影响,在天然气水合物矿体的预测中,必须联合利用其他分析检测技术(AVO反演、波阻抗反演、瞬时属性剖面、能量半衰时剖面等),去伪存真,才能综合确定水合物矿体的展布。
参考文献
[1]何汉漪著.海上高分辨率地震技术及其应用.地质出版社,2001,7,27~44
[2]李正文,赵志超.地震勘探资料解释[M].北京:地质出版社,1988
[3]王玉学,韩大匡,刘文岭等.相干体技术在火山岩预测中的应用,石油物探[J].2006,45(2):192~196
[4]王永刚,刘礼农.利用相干数据体检测断层与特殊岩性体,石油大学学报[J].2000,24(1):69~72
[5]俞益新.碳酸盐岩岩溶型储层综合预测概述,中国西部油气地质[J].2006,2(2):189~193
[6]张光学,耿建华,刘学伟等.“天然气水合物探测技术”之子课题“天然气水合物地震识别技术”,“十五”863,2005
[7]张明,张光学,雷新华等.南海北部海域天然气水合物首钻目标优选关键技术报告,“十五”快速863,2006
[8]宋海斌,张岭,江为为等.海洋天然气水合物的地球物理研究(Ⅲ):似海底反射[J].地球物理学进展,2003,18(2),182~187
[9]沙志彬,杨木壮,梁金强等.BSR的反射波特征及其对天然气水合物识别的应用[J].南海地质研究(15),北京:地质出版社,2004,55~61
[10]张光学,黄永样,陈邦彦等.海域天然气水合物地震学[M].北京:海洋出版社,2003
[11]Ecker C,Dvorkin J,Nur A M.Estimating the amount of gas hydrate and free gas from marine seismic data[J].Geophysics,2000,65,565~573
[12]Miller J J,Myung W L,von Huene R.An analysis of a reflection from the base of a gas hydrate zone of peru[J].Am.Assoc.pet.Geo1.Bull.1991,75,910~924
[13]Wood W T,Stoffa P L,Shipley T H.Quantitative detection of methane hydrate through high-resolution seismic ve1ocity analysis[J].J.Geophys.Res.1994,99,9681~9695
[14]Sloan E D.Clathrate Hydrates of Natural Gas.Marcel Dekker,New York,1990
[15]Katzman R,Holbrook W S.Paull C K.Combined vertical-incidence and Wide-angle seismic study of gas hydrate zone,Blake Ridge[J].J.Geophy.Res.1994,99:17975~17995
Recognizing GaS HydrateS SeiSmic Character by Application and Study of the Body of Coherent Data
Sha Zhibin1,2 Zhang GuangXue2 Zhang Min2 Liang Jinqiang2
(1.China University of Geosciences(Wuhan),Wuhan,430074;2.Guangzhou Marine Geological Survey,Guangzhou,510760)
Abstract:During interpretation of the profile of natural gas hydrates,it’s very difficult to distinguish zone of gas hydrates from the profile of stack and migration.Through our practice in these several years,We think that the body of coherent data and the slice of them in Which abnormal physical geography character of gas hydrates can be shown preferably.So that We can use this kind of data to judge seismic character of gas hydrates,and the area of them that exist.By this means we can recognize gas hydrates.
Key Words:Gas hydrates The body of coherent data Application and study
国内天然气产量连续5年突破千亿方,天然气的前景怎样?
林霖1,2 沙志彬1,2 龚跃华1,2 匡增桂1,2 尚久靖1,2
(1.广州海洋地质调查局 广州510760;2.国土资源部海底矿产资源重点实验室 广州510760)
第一作者简介:林霖(1985—),男,硕士,助理工程师,主要从事天然气水合物勘查研究工作,E-mail:linlin_gmgs@163.com。
摘要 南海北部海域的高分辨多道地震数据显示出较大范围的 BSR 反射特征,预示区域内天然气水合物的赋存量较为可观。本文利用瞬时频率属性和最小振幅属性分析技术,在叠后地震数据的基础上刻划游离气的分布特征。结果显示研究区内游离气分布较广,但其范围小于BSR分布区,受断层的控制作用明显。
关键词 天然气水合物 游离气 地震属性
1 前言
天然气水合物是在低温高压条件下形成的似冰状的固体化合物,在世界各地冻土区和深海沉积层中均有发现。自然界中形成天然气水合物的气体以甲烷为主。因其可观的能源前景,近年来,众多国家的研究机构、能源部门都越来越重视与其相关的研究,并开展了与广泛的调查工作。我国从20世纪90年代中期就开始持续地关注这一领域,开展了与天然气水合物有关的研究和调查工作。广州海洋地质调查局对南海北部的调查工作显示[1],南海北部蕴藏有丰富的天然气水合物资源。本文利用广州海洋地质调查局近期采集的高分辨多道地震数据,分析南海北部陆坡区东沙海域天然气水合物成矿区的游离气分布特征。
2 研究区概况
2.1 地质背景
研究区位于南海北部海域附近,该区东接欧亚板块和吕宋岛弧碰撞形成的台湾弧陆碰撞造山带,东南侧南海海盆正向菲律宾海板块俯冲消减,南侧为海底扩张形成的南海洋壳,而西侧与有伸展背景的珠江口盆地相接。总体而言,该区域构造复杂,地质活动丰富,形成了多种多样的地貌单元[2]。因本区主要位于陆坡区,水深变化范围较大,约500~2000m,整体向南逐渐加深。海底地貌主要以海底斜坡、冲刷沟槽、冲蚀洼地、海谷、海丘、滑塌体、泥火山等为主。在似海底反射(BSR)发育区以逐级下降的台阶地形为主,并常见规模不等的滑塌体。研究区的海底地貌与其浅部发育的一系列近东西向正断层有关,说明其主要受新构造活动控制。活跃的断裂活动为深部气源提供了主要的运移通道,是本区天然气水合物成藏的有利条件。
2.2 地震数据
2011年和2012年广州海洋地质调查局在研究区采集了高分辨率的多道地震数据。数据处理时考虑到天然气水合物多分布于海底以下1km的深度范围内,因此加强了对浅部地层的成像处理。
图1(a)Line80线地震剖面及其(b)瞬时频率属性,剖面位置见图2.
Fig.1(a)Seismic profile of Line80 and its(b)instantaneous frequency attribute,see Fig.2 for location.
叠后数据显示研究区内的多数测线上都存在明显的BSR,且连续性较强、反射极性与海底相反、反射强度较大并与正常沉积地层反射同相轴相交、上下常伴有空白反射现象,典型剖面如图1 a所示。在研究区内对这类典型BSR进行了追踪,并划分成6个主要分布区(图2)。BSR总体近似平行于海底,与海底的距离保持在400ms以内,在深水区距海底的厚度增大,这与水合物稳定带厚度随水深增加有关。在局部反射较强的地方,常观察到BSR与滑塌体移动面叠合的现象,且多为滑移面上部位(图1 a)。推测其成因为滑塌体移动后,滑移面上部地层压力降低、孔隙度增加,形成天然气水合物储集空间。从地震数据上还可观察到BSR下部多存在气体扰动和“气烟囱”现象。高分辨率地震的观测结果预示本区是十分有利的天然气水合物成矿区。
图2 平均瞬时频率属性
Fig.2 Average instantaneous frequency attribute
3 含天然气水合物和游离气地层的地震响应特征
目前 BSR 仍是主要的天然气水合物识别标志。纯甲烷水合物的 P 波速度大约是3.27km/s,而海水的P波速度约为1.5km/s,部分充填天然气水合物的沉积层速度高于周围的沉积层,这一速度差别取决于天然气水合物的充填量和其微观的分布方式[3]。一般认为BSR是含天然气水合物地层底界的反射,与正常海底反射相比,具有反极性和下部阻抗减小的地震特征。但一些地区的研究表明,BSR的产生也可以是由下部含游离气引起,如ODP航次146和164分别在Cascadia Margin和Blake Ridge进行的调查显示,下部游离气引起的低速异常是这两个地区产生BSR的原因[4]。
与天然气水合物有关的另一反射特征是振幅空白带,即地层的反射率相对较低。这可能是由水合物聚集充填孔隙引起的,但也有可能是沉积层本身较均一,如Blake Ridge地区ODP994、995和997站位[4]。可见目前用来在地震剖面上识别天然气水合物的反射特征都存在一定的多解性。利用地震数据的其他属性,可以在一定程度上降低多解性,区分不同情况的反射特征[5]。本文将使用瞬时频率属性和地震振幅分析两种方法定性判别研究区内游离气的分布特征。
3.1 瞬时频率
地震数据的瞬时属性(瞬时振幅、瞬时频率和瞬时相位)是在对原始地震道做希尔伯特变换的基础上计算得到的。瞬时频率是瞬时相位对时间的导数,即瞬时相位的变化率,可以提供地震数据的频率信息。
地震波在含水合物层存在一定的衰减效应,并且随着水合物含量增加而增加[6],游离气对P波的衰减比水合物层的影响更大。地震波振幅的减弱与地震波沿传播路径的波数有关,在衰减较大的区域,短波长(高频)部分的能量优先被衰减,其结果是这一区域的地震数据只有低频部分,因此瞬时频率属性可以帮助我们探测衰减比较大的区域,识别含有水合物和游离气的地层。
研究区内BSR 下部地层多有反射频率急剧下降的现象(图1 b),表明地震波通过BSR后衰减较多,在这些地方BSR下部应含有一定量的游离气。注意某些穿过BSR的断层,其位于BSR上部的局部区域瞬时频率也较低。这可能是因为①断层为气体运移至BSR上部提供了通道,同时天然气水合物的含量相对较低,没有对气体向上运移形成封堵;或②水合物沿断层分布,且含量较高,产生较强的衰减效应。
平均瞬时频率属性在给定时窗内计算瞬时频率的平均值,反映某层段内瞬时频率属性的平面分布特征。为考察全区BSR下部游离气的影响,选取计算时窗为BSR上10ms到BSR下100ms,同时将BSR层位插值外推至全区进行计算,结果如图2所示。低频率异常区主要分布于BSR分布区BSR-1、BSR-2和BSR-6,说明这些区域气体通量较大,是可能的游离气赋存区域。
3.2 地震振幅分析
本文使用的另一种定性分析游离气分布的方法,也是利用既有的地震属性算法,即通过计算BSR上下一定范围内的最小振幅值,并生成其平面分布来实现。这一方法的有效性是基于对BSR形成原因的一种认识。一些对比研究表明[7],由Helgerud等(1999)提出的针对含水合物地层的岩石物理模型得到的正演结果比较符合实际数据[7]。Dvorkin(2007)和Zhang等(2012)利用这一等效介质模型,以数值方法模拟了海洋沉积物中赋存天然气水合物和游离气的不同情形,认为反极性、强振幅的BSR的产生与游离气的存在有关(图3c,图3d),而含水合物层只有在高饱和度时,才在其上界面形成反极性的强振幅反射特征(图3b)。因此BSR的最小振幅反映了可能的游离气分布或含水合物层下伏游离气的分布特征,其值越低(波谷越深)水合物或游离气饱和度越大[9,10]。
研究区内BSR层位由人工拾取,且经过全区插值处理,在部分剖面上并不准确,因此使用了较大的时窗(BSR上50ms到下100ms)在叠后地震数据体上提取最小振幅属性。其平面分布见图4,色标的红色端表示最小振幅的极值异常。从中可以发现,本区游离气分布仍以BSR-1、BSR-2 和BSR-6 区为主,这与瞬时频率反映的分布特征一致。在BSR-1和BSR-2区域内,最小振幅极值异常显示出近东西向条带状分布,与穿过BSR的断层走向一致,反映了断层作为主要的流体运移通道,对游离气分布起控制作用。
图3 含天然气水合物和游离气的地层模型及其合成地震剖面[10]
Fig.3 Models for hydrate?bearing sediment and its synthetic seismic profile[10]
4 结语
目前认为近海底沉积物中含游离气或含水合物沉积层下伏游离气层是产生负极性强反射BSR的主要原因。研究区内BSR分布广泛,在地震剖面上显示出强振幅、反极性等特征,预示本区天然气水合物资源前景非常有利。瞬时频率属性反映研究区内存在大面积的游离气分布,主要以BSR-1、BSR-2和BSR-6区为主。利用最小振幅属性进一步刻划了游离气在研究区内的分布特征,明确其主要受断层的控制。说明两种属性提示的大量游离气的存在,表明水合物的形成具备很好的气源基础。
图4 最小振幅属性
Fig.4 Minimum amplitude attribute
参考文献
[1]邓希光,吴庐山,付少英,等.2008.南海北部天然气水合物研究进展.海洋学研究,26(2):67-74
[2]何廉声,陈邦彦.1987.南海地质构造图:南海地质地球物理图集[M].广州:广东地图出版社
[3]Ecker C,Dvorkin J,Nur A M.2000.Estimating the amount of gas hydrate and free gas from marine seismic data.GEOPHYSICS,65(2):565-573
[4]Taylor M H,Dillon W P,Pecher I A.2000.Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir:new insights from seismic data.MARINE GEOLOGY,164(1):79-89
[5]Berndt C,Bunz S,Clayton T,et al.2004.Seismic character of bottom simulating reflectors:examples from the mid?Nor?wegian margin.Marine and Petroleum Geology,21(6):723-733
[6]Dvorkin J,Uden R.2004.Seismic wave attenuation in a methane hydrate reservoir.The Leading Edge,23(8):730-732
[7]Chand S,Minshull T A,Gei D,et al.2004.Elastic velocity models for gas?hydrate?bearing sediments—a comparison.Geophysical Journal International,159(12):573-590
[8]Helgerud M B,Dvorkin J,Nur A,et al.1999.Elastic?wave velocity in marine sedimentswith gashydrates:Effective medium modeling.Geophysical Research Letters,26(13):2021-2024
[9]Dvorkin J,Nur A.2007.Seismic amplitudes from gas hydrates.E&P,November
[10]Zhang Z,McConnell D R,Han D H.2012.Rock physics?based seismic trace analysisof unconsolidated sediments containing gas hydrate and free gas in Green Canyon 955,Northern Gulf of Mexico.Marine and Petroleum Geology,34(1):119-133
Free Gas Character and Distribution of Gas Hydrate Zone,North of South China Sea
Lin Lin1,2,Sha Zhibin1,2,Gong Yuehua1,2,Kuang Zenggui1,2,Shang Jiujing1,2
(1.Guangzhou Marine Geological Survey,Guangzhou,510760;2.Key Laboratory of Marine Mineral Reasources,MLR,Guangzhou,510760)
Abstract:High resolution multi?channel seismic data shows large BSR distribution in the north of South China Sea,and indicates that gas hydrates are highly concentrated.Free gas distribution of this area was characterized by using instantaneous frequency and minimum amplitude attributes.The results show that free gas mainly controlled by the faults penetrated BSR,and its distribution area is smaller than BSR.
Key words:Gas Hydrate;Free gas;Seismic attributes
伍德麦肯兹数据平台使用功能
我国的天然气前景可谓是相当光明,因为我国的天然气储量已经呈现稳定上升的态势发展。
国内的天然气产量连续5年取得突破之后,很多网友也关心起了国内的天然气产业发展,因为天然气属于清洁能源的范围,如果能够大量使用天然气的话,那么必然会给环保事业的发展带来相当大的推动。
一、我国的天然气前景可谓是相当光明。虽然我国的天然气需要国外市场的供应,但是在科学工作者的努力下,我国局部地区还是发现了相当规模的天然气储量,只要我们能够好好利用这些天然气资源,我国的天然气前景也必然会非常的光明。当这些天然气资源能够被好好利用后,我国的能源供应也将会有所保障。
二、我国的天然气前景相当光明,是因为我国的天然气储量处于上升趋势。尽管我国也有着丰富的天然气储量,但是由于我国属于人口众多的国家,这使得中国的人均天然气储量依旧处于世界的末尾位置。不过随着我国天然气储量出现稳定上升的趋势后,我国的人均天然气拥有量也开始有了明显的提升,所以我认为我国的天然气行业也必然会有着不错的发展。
三、我国的天然气前景相当光明,是因为我国掌握了相关的天然气先进技术。也许很多人觉得开采天然气,并不是一件困难的事情,但是由于我国的地理形势相当复杂,这使得开采天然气是一件相当麻烦的事情。如果没有办法掌握先进的天然气开采技术,那么必然会导致天然气的开采存在很多的安全隐患,为了更好的开采天然气,我国的科学技术人员也掌握了相当出色的天然气开采技术。
天然气成因类型划分及气源分析
1、数据浏览:平台提供了丰富的能源数据,包括原油、天然气、电力、煤炭、可再生能源等。用户可以浏览实时数据、历史数据和预测数据,了解市场趋势和价格波动。
2、数据分析:平台提供了多种数据分析工具,如图表、报表、数据可视化等。用户可以自定义分析参数,深入研究能源市场数据,为决策提供支持。
3、报告和研究:平台提供了大量的报告和研究内容,涵盖了全球能源市场的各个领域。用户可以获取专业的市场分析、行业报告、项目评估等,了解行业动态和趋势。
天然气的前景怎样?
(一)无机与有机天然气类型划分
天然气成因类型的判识主要依赖于天然气的组分和碳、氢同位素组成,并以天然气伴生的轻质油、凝析油、原油的轻烃地球化学特征以及稀有气体同位素组成为辅。腰英台地区的甲烷碳同位素明显偏重,其δ13C1>30‰。据戴金星(1992),除高成熟和过成熟的煤型气外,δ13C1>-30%。的均为无机成因的甲烷,因此利用CH4(%)与δ13C1(‰)图可知(图3-33),腰英台构造带主要分布煤型气区内,ChaS1井与YS1井(3466m)登娄库组可能为无机成因甲烷气或者少量的无机气混入的有机气,另外ChaSl井区的个别样品介于无机气与有机气之间,从而表明此研究区有深部的无机气混入,达尔罕构造带以及双坨子地区主要分布有机成因煤成气,煤型气与油型气需要进一步的判识(张枝焕、童亨茂等,2008)。
图3-33 无机与有机天然气类型划分
1—YS1(K1d);2—YS1(K1yc);3—YP1(K1yc);4—YP7(K1yc);5—YS2(K1yc);6—DB11(K1yc);7—D2(K1yc);8—DB33井区;9—ChaS1井区;10—双—坨子地区
(二)有机烷烃气体进一步鉴别
在有机成因的烷烃气中,生物气和裂解气均具有高甲烷含量、低重烃含量的特点,它们的区别之一是生物气甲烷碳同位素较低,而裂解气的甲烷碳同位素值偏重,根据生物气的一个良好鉴别标志δ13C1<-55%来看,长岭断陷天然气均属于裂解气。从δ13C1—1gC1/C2+3关系图来看(图3-34),腰英台构造带与ChaS1井区的天然气均属于煤型气,ChaS1井个别样品明显有无机气的混入,为煤成气与无机气的混合气。双坨子地区与腰英台地区的天然气组成特征明显存在差别,主要为原油伴生气以及凝析油与原油伴生气的混合气,由此表明两研究区的天然气的气源是不一致的,腰英台与达尔罕构造带的天然气主要为腐殖型干酪根裂解气,而非原油裂解气(张枝焕、童亨茂等,2008)。
苏联学者Гуцадо(1981)从CH4与CO2共生体系碳同位素热平衡原理出发,以世界上已有CH4与CO2共生体系中测得的δ13C.和δ13Cco2为依据,将自然界不同成因类型的CH4与CO2共生体系划分为三个区,即Ⅰ区为无机成因区,Ⅱ区为生物化学气区,Ⅲ区为有机质热裂解气区。根据图3-35不难看出,研究区腰英台构造带主要分布有机质热裂解气,YS1井与YS2井营城组天然气个别样品分布在无机气的成因区域,大部分样品介于有机质热裂解气区与无机成因气区,达尔罕构造带的天然气主要为有机质裂解气,因此腰英台构造区块的天然气极有可能存在混源特征,可能有无机气的混入,其混源单元还需要进一步的鉴别。
图3-34 天然气δ13C1—lg(C2+(C3)关系图
1—ChaS1井区;2—双坨子地区;3—YS1(K1yc);4—YS1(K1d);5—YP1(K1yc);6—YP1(K1yc);7—YS2(K1yc);8—DB11(K1yc);9—DB33井区
图3-35 CH4与CO2共生体系碳同位素分布图
1—YS1(K1d);2—YS1(K1yc);3—YP1(K1yc);4—YP7(K1yc);5—YS2(K1yc);6—DB11(K1yc);7—D2(K1yc);8—DB33井区
(三)无机成因甲烷气及识别标志
自然界烃类的大规模形成是有机-无机物质相互作用的结果,而现今油气勘探都是在有机烃源发育的盆地中进行,有机和无机烷烃气混合成藏使无机烷烃气不如非烃气易于识别。尽管如此,目前在许多裂谷盆地中发现了一系列可能的无机成因天然气的聚集,说明无机成因油气仍有一定的发展前景。
到目前为止,对无机成因烃类气体的判断主要依据有烃类气体的组分、碳同位素、烷烃碳同位素系列、与烃类气体伴生的非烃气体、稀有气体的含量及同位素以及地质背景综合分析等方法。松辽盆地有无机成因CH4的一些重要判别依据:
1.该区与无机CO2气藏等伴生的CH4气藏,有特高甲烷碳同位素及负碳同位素系列
在松辽盆地采送的与无机CO2气藏等伴生的甲烷碳同位素分析样品,碳同位素值出现了大量的δ13C1值大于-30‰,其中还有大量大于-20‰的样品,并出现了大量负碳同位素系列样品,且上述两种特征还同时出现在同一气田(藏),显示了无机成因烃气的存在。
碳同位素是判识无机成因天然气最直接的证据。我国许多地区如云南腾冲县澡塘河、四川甘孜县拖坝、吉林长白山天池、内蒙古克什克腾旗热水镇以及国外许多地区如新西兰地热区、东太平洋热液喷出口、俄罗斯希比尼地块岩浆岩、美国黄石公园等都发现了无机CH4。这些地区的甲烷碳同位素虽然变化较大,但一般都大于30‰。
许多学者亦提出了鉴定无机成因CH4的下限值,有的为大于-20‰,有的为-30‰。但必须指出的是不论哪一个值都不是划分无机甲烷的绝对值,因为某些高(过)成熟的煤型CH4也有显示重碳同位素特征的特点,因此在确定其成因时还需综合考虑其他资料,如烷烃气碳同位素系列、地质构造背景等。其中碳同位素系列是识别有机、无机烷烃气最有效的手段之一。
有机成因的天然气主要源于沉积物中分散有机质的分解。在生烃母质干酪根热降解生成烷烃气的过程中,由于12C—12C键的键能低于12C—13C键,因此生物成因天然气中CH4及其同系物的碳同位素组成具有随碳数的增大而变重的分布特征,即δ13C1<δ13C2<δ13C3<δ13C4正碳同位素系列。这种分布特征几乎存在于所有有机成因的天然气藏,并被有机质热解成烃的模拟实验和理论推导所证实。而对于无机成因的烷烃气来说,重烃气含量很少,而且主要是由甲烷通过放电作用聚合形成的。在由CH4聚合形成高分子烃类或CO加氢合成烃类的过程中,由于12C—13C键的键能低于12C—12C键,使12C随分子量的增加而逐渐富集,从而形成甲烷同系物的碳同位素组成与有机成因的同位素系列正好相反,即形成δ13C1>δ13C2>δ13C3负碳同位素系列。如前面提到的俄罗斯希比尼地块与岩浆岩有关的天然气中δ13C1为3.2‰,δ13C2为9.1‰,δ13C3为16.2‰;美国黄石公园泥火山气的δ13C1为21.5‰,δ13C2为26.5‰。
徐家围子断陷在昌德、汪家屯、肇州以及朝阳沟等地区及腰英台气田均发现了甲烷碳同位素异常和负碳同位素系列,表明该区有无机烃类气体存在。汪家屯地区W a903井甲烷碳同位素最重达12.22‰,而乙烷的碳同位素为22.99‰;昌德地区表现的最为明显,FaS1、FaS2等井多个气样显示负碳同位素系列,且甲烷碳同位素偏重。从这些气样组分来看,干燥系数 一般都在0.98以上,显得很干,也与无机成因烷烃气的特征相似。
此外,也有学者提出负碳同位素系列并不是判断无机成因烃类气体最可靠的标志,由两种不同成因天然气混合,或由天然气的扩散引起同位素分馏均可造成这种现象的出现。以往的研究认为混合作用形成甲烷至丁烷碳同位素的完全反序排列可能性不大,但最近的同位素数值模拟研究结果表明,两种碳同位素正序排列的天然气,混合后可以得到碳同位素完全反序排列的天然气,但要求混合的两个端元的天然气必须具有不同的成因或来源,或它们是明显不同演化阶段的产物。从徐家围子地区的地质条件和同位素特征来看,很难用两种有机成因的气混合加以解释,因为要得到FaS1、FaS2那样重的甲烷负碳同位素系列,要求具有有机成因天然气甲、乙、丙碳同位素为15‰,-14‰,13‰相当的天然气存在,而这种天然气无法与有机质演化的任一阶段相对应,在徐家围子地区也未发现具这种特征的天然气。因此,混合作用不能合理解释该区存在的负碳同位素系列。
2.在该区火山岩的原生流体包裹体中发现CH4
地球深部流体的性质和成分是当前国内外学术界争论的热点课题。火山喷发物中含有大量的非烃气体、少量烃类气体、稀有气体以及沿一些深大断裂带及地震期前后有烃类气体、CO2和稀有气体释放已是公认的事实。近年来对火山岩及其地幔岩流体包裹体的研究进一步揭示其流体相主要为H2O、CO2、CH4、N2、H2、H2S及一些稀有气体。地幔物质及其所含流体在横向和纵向上分布也是极不均匀的,如河北大麻坪尖晶石二辉橄榄岩幔源岩气体包裹体中还原性气体含量高达68.0%~93.4%,而山东栖霞大方山二辉橄榄岩样品中还原性气体为8.5%~39.3%。有学者研究了我国华北地区地幔岩的分布,认为地球深部由上到下依次为尖晶石二辉橄榄岩、尖晶石-石榴石二辉橄榄岩和石榴石二辉橄榄岩,分别代表岩石圈地幔和软流圈地幔。其中石榴石二辉橄榄岩中的H2和CH4的含量最高,而尖晶石二辉橄榄岩含H2和CH4相对较低,因而认为地球深部不同圈层可能孕育有不同性质和类型的天然气,由浅至深有H2O→CO2→CH4、H2富集的趋势,其中莫霍面附近可能是CO2的聚集带,岩石圈与软流圈界面附近可能是烃气的富集带,而H2可能有更深的来源。
在该区非气层段火山岩中采集的火山岩流体包裹体,普遍有较高含量的无机烃气,证实无机成因烃类气体对该区气藏的贡献不容忽视。从徐家围子地区岩浆火山岩流体包裹体气液相成分来看,岩浆成分由基性变为酸性时,CO2有从少变多的趋势,CH4的变化趋势正好相反,因此上述研究成果及推断可能是正确的。在长岭达尔罕及腰南构造,在DB11 井的4017~4120m井段的基性岩中发现大量含CH4的气液相包裹体,其中CH4的最高含量可达到31.9%,该层测试产纯CH4,而在相邻的DS2井3670~3780m的酸性流纹岩中,产出以CO2为主的气藏,在该层中发育大量含CO2的气液相包裹本。
3.在该区发现大量示指深部低氧逸度环境的伴生气体
在松辽盆地,已发现部分高含H2及CO、H2S气的气藏,反映该区地壳深部存在低氧逸度环境,有利于甲烷的生成。无机成因气中低氧逸度组分往往构成共生组合,如DB11井营城组玄武岩段,H2含量达6%,H2S含量达(30~50)×10-6,与CH4共生。其各项同位素指标均反映这些组分源自无机成因,证实深部存在低氧逸度的大地构造环境。
4.从地质背景综合分析方法证实应当存在无机成因甲烷
一般认为,某些高(过)成熟的煤型甲烷也有显示重碳同位素特征的特点,并经不同成因天然气混合,或由天然气的扩散引起同位素分馏可造成负碳同位素系列。因此,在一些不含煤系的地区,如部分烃类气藏的δ13C1出现明显偏重,且出现负碳同位素系列,但周缘未发现明显的煤系烃源岩,可以确定存在较大规模的无机甲烷供给。
无机CO2与甲烷的共生,在各类有机烃类成藏条件差别不大的情况下,在局部地区出现特高、特大的气藏,或在有机烃类气体供给很少的区带,在圈闭中发现大量甲烷,揭示存在无机成因甲烷的供给。
以腰英台—达尔罕断凸带为例,该带已钻达基岩顶面的D2、DBIl井揭示,经二维、三维地震资料标定,该区周邻不存在煤系源岩,其它方向有机烃源的运移供给路线也很长。但在腰英台深层气田,发现富含CO2(含量15%~24%),以CH4为主(76%~85%)的气藏,也存在甲烷重碳同位素和碳同位素反向序列。在YS1、YS101、YS102、ChaS1、ChaS1-1、ChaS1-2、ChaS1-3井揭示大型腰英台气田,探明天然气地质储量达(600~700)×108m3的情况下,周围的ChaS2、D2、YN1井却仅发现了CO2气,未发现烃类聚集。这些表明腰英台深层气田有天然成因甲烷的混人。
由于岩石圈地幔及地壳深处广泛存在C、H、O、N等元素,无机成因天然气的主要组成是CO2,其次是CH4及N2等,无机成因气藏也是以CO2为主,含部分CH4、H2、N2、CO2等组分。在无机成因的甲烷气苗中,甲烷含量一般在5%~30%,但即使是这种较低含量,无机成因甲烷供给量也远大于有机成因甲烷供给量。1979年Welham等指出,东太平洋北纬21°处中脊喷出的热液(400℃)中,含氢气、甲烷的氦,δ13C1值为17.6‰~-15‰,R/Ra约为8,说明这些气体是幔源的。该处喷出的H2的体积浓度为10%,每年喷出H2和CH4分别为12×108m3和1.6×108m3,如果以此喷出速度,即使仅按照与火山热事件的地质历史100万年来计算,该处喷出的H2和CH4即可达到1200×1012m3、160×1012m3,也远远大于有机物的生烃量。由此也可见,CO2的供给量是何等惊人。
同时在沉积盖层的深埋压实条件下,CO2易于与地壳中碳酸盐岩、碱性岩类发生反应,并大量溶解于水中,而产生大量的损耗。而在地壳沉积盖层的温度、压力条件下,CH4则有相对的化学稳定性,在CO2逃逸和散失量很大的条件下,无机成因CH4常可以形成相对富集,甚至形成无机成因甲烷为主的天然气藏。
(四)煤型气与油型气的鉴别
确认天然气属于煤型气还是属于油型气,对于追溯、对比烃源岩起着重要作用,目前最为常用的参数是乙烷或丙烷碳同位素。YS1井登娄库组天然气δ13C2为-24.7‰,为典型的煤型气,YS1井营城组天然气δ13C2为-26.4‰~-26.5‰,DBIl-1井与DBl1-2井营城组天然气δ13C2为-26.1‰~-28.7‰,均为煤型气和油型气混合气区,DB33-9-3井天然气的δ13C2为-29.3‰,也接近煤型气和油型气混合气区,按照δ13C2值-29%。为界限,长岭断陷天然气为高成熟的煤型气。
1.“V”型鉴别图(δ13C1-δ13C2-δ13C3)
考虑到甲烷、乙烷与丙烷三者碳同位素的综合信息,在δ13C1—δ13C2δ13C3相关图上(图3-36),利用烷烃成因天然气碳同位素系列数据,能够鉴别不同成因的有机天然气。其中Ⅰ区为煤型气,Ⅱ区为油型气,Ⅲ区为混合型气,Ⅳ区为深层混合气(戴金星,1992;顾忆等,1998)。从图3-36可以看出,腰英台构造带与达尔罕构造带的天然气主要分布在碳同位素倒转区以及煤型气和油型气或者深层气的混合气区,而且天然气的成熟度明显偏高,DBll井的天然气可能有少量的油型气混入,双坨子地区的天然气主要为煤型气与油型气,由此表明,双坨子构造带的天然气的特征明显不同于上述两个构造带,腰英台与达尔罕构造带的天然气明显具有多源的性质,而且可能混有深部的无机气,造成其甲烷的同位素明显偏重,导致其烃类组分的同位素发生倒转。
2.δ13C2-δ13C1图
通过利用δ13C2值的大小将天然气划分为煤型气、油型气以及煤型气与油型气的混合气区,再通过δ13C1受热演化程度的差异将天然气划分为未熟、低熟,成熟、高熟以及过成熟五个阶段,可以很好地将天然气中煤型气与油型气类型分开,从图3-37可以看出,腰英台与达尔罕构造带的DB33-9-3、DB33-5-5、DB11井以及ChaS1井的个别样品可能为高过成熟的煤型气与油型气混合气,而其余样品天然气均为高过成熟的煤型气,双坨子地区的天然气成熟度略低,分布油型气或煤型气,不同于腰英台与达尔罕构造带的天然气的特征。
图3-36 天然气δ13C2-δ13C1不同成因类型图
1—ChaS1井区;2—双坨子地区;3—YS1(K1d);4—YS1(K1yc);5—YP1(K1yc);6—YS7(K1yc);7—YS2(K1yc);8—D2(K1yc);9—DB11(K1yc);10—DB33井区
图3-37 天然气δ13C2—δ13C1不同成因类型图
1—ChaS1井区;2—双坨子地区;3—YS1(K1d);4—YS1(K1yc);5—YP1(K1yc);6—YP7(K1yc),7—YS2(K1yc);8—D2(K1yc);9—DB11(K1yc);10—DB33井区
3.C1/C1-5与δ13C1图
利用干燥系数(C1/C1-5)与δ13C1同样也可以判识天然气类型.对于煤型气与油型气在不同的演化阶段过程中,其干燥系数与δ13C1存在一定的对应关系,对于成熟度高的油型气与煤型气,其干燥系数与δ13C1必然很高,图3-38中A1、B1、C1、D1、E1为煤型气演化阶段,界限由虚线表示,A2、B2、C2、D2、E2为油型气演化阶段,界限为由实线表示。通过图3-38可以看出,腰英台构造带与达尔罕构造带的营城组与登娄库组的天然气主要分布在高成熟的煤型气与油型气区,双坨子地区天然气具有煤型气与油型气的混合特征,明显不同于两构造带的天然气特征。
图3-38 利用C1/C1-5与δ13C1图判别不同类型烷烃气体
1—ChaS1井区;2—双坨子地区;3—YS1(K1d);4—Ys1(K1cy);5—D2(K1cy);6—YP1(K1yc);7—YP7(K1yc);8—YS2(K1yc);9—DB11(K1yc);10—DB3井区
(五)天然气同位素倒转现象分析
长岭断陷腰英台与达尔罕构造带天然气碳同位素系列数据分析表明,碳同位素倒转系列和负碳同位素系列是其主体,并且碳同位素明显偏重。导致碳同位素异常的原因有很多,研究天然气碳同位素倒转的原因,对天然气的成因或其经受的次生变化作出判断,可以作为天然气运移途径和气源对比的一种间接方法。戴金星(1993)曾对烷烃气碳同位素系列倒转问题作过详细研究,认为引起碳同位素系列倒转的主要原因有:1)有机气与无机气的混合,二者分别属于正碳同位素系列与负碳同位素系列的典型,当二者混合时,很容易发生同位素分布的倒转现象;2)煤型气与油型气的混合,这是造成碳同位素系列倒转的主要原因;3)同型不同源或同源不同期天然气的混合,同源的早期形成的低成熟度的天然气散失一部分后的剩余气,与晚期较高成熟度形成的天然气形成混合天然气,可导致烷烃气同位素倒转;4)生物降解作用,细菌选择降解某些组分致使剩余组分变重;5)地温增高也可使碳同位素倒转,在碳同位素交换平衡下,若地温高于100℃,则出现正碳同位素系列;当温度高于200℃时,则正碳同位素系列改变成为负碳同位素系列(戴金星,1990);6)源岩性质控制,在中国陆相河湖交替发育的含油气盆地,烃源岩有机质的分布是不均一的,同一套烃源岩中I型和Ⅲ型有机质可能同时存在,因此其产生的烃类烷烃气可能发生倒转,松辽盆地北部深层烃源岩就有混源的特点。
此外,盖层微渗漏造成的蒸发分馏作用也是许多天然气藏同位素出现倒转的重要原因,Prinzhofer等(1995)在对Jenden的资料进行重新解释时,认为微渗漏作用更能合理地解释Appalachian盆地天然气同位素的倒转现象,他们按Jenden等提出的混合模式计算后发现有些样品点并不符合混合模式,提出了一种新的微渗漏模式。黄海平(2000)利用微渗漏模式较好地解释了徐家围子断陷深层天然气同位素倒转的现象。从图3-39看出,腰英台构造带的ChaS1井区、达尔罕构造带的DB11-1、DB11-2、DB33-9-3、DB33-5-5等井天然气样品同位素发生倒转,是受到盖层微渗漏作用的影响。
导致天然气碳同位素倒转可能是上述因素之一,也可能是两种或两种以上的因素引起的。长岭断陷深层天然气普遍被认为主要来源于沙河子组和营城组,经历了较复杂的构造变形和较高的成熟演化阶段,可能存在多源气的混合,主力烃源岩发育于盆地断陷晚期和坳陷早期,火山活动频繁,烃源岩除正常的热演化外,还受到因火山活动引起的异常热事件,主力烃源岩沙河子组和火石岭组在盆地分布不均一,有机质具有非均质性,因生气层上下部位和层内成熟度及有机质性质不一样,也会使同层同时生成的天然气同位素发生混合而倒转。盆地基底发育深大断裂,无机成因的CO2、N2普遍存在,并且丰度较高,在腰英台地区CO2含量平均值为20%以上,因此天然气中可能有无机成因烷烃气加入,天然气藏产层主要在登娄库组与营城组,成藏模式比较复杂,天然气可能以垂直运移为主,运移路径较长,因而可以引起多期次的天然气碳同位素动力分馏效应。
图3-39 天然气同位素反转解释模式
1—ChaS1井区;2-双坨子地区;3—YS1(K1d);4—YS1(K1yc);5—D2(K1yc);6—YP1(K1yc);7—YP7(K1yc);8—YS2(K1yc);9—DB11(K1yc);10—DB33井区
据此按照通常的天然气同位素的划分,结合长岭断陷腰英台地区天然气各种分析数据可知,YS1井登娄库组以及ChaS1井个别样品表现出无机成因气的特点,而腰英台构造带大部分井区的样品,如YS1、YS2、YP7井以及达尔罕构造带的DB33井区、DB1I井主要分布有机成因的烷烃气(张枝焕、童亨茂等,2008)。
天然气应用领域分布
近年来,随着我国城市化进程的加快和环境保护力度的提高,特别是长输管线等大型基础设施的建设和完善,我国天然气消费结构逐渐由化工和工业燃料为主向多元化消费结构转变,其中城市燃气、天然气发电、LNG汽车等消费得到较大发展。
我国天然气主要使用在四个方面,分别是城市燃气、化工领域、工业领域和发电。2020年,中国天然气消费量3280亿立方米,增量约220亿立方米,同比增长6.9%,占一次能源消费总量的8.4%。从消费结构看,工业燃料和城镇燃气用气占比基本持平,均在37-38%,发电用气占比16%,化工用气占比9%。
注:截止2022年5月23日,自然资源部发布的《中国天然气发展报告》数据仅披露至2020年。
城镇燃气消费情况
中国城市化进程、家庭小型化趋势是城市天然气消费持续成长的动力。随着中国城市化进程不断加快,促使城市人口的快速增加,扩大了用气人口的基数。2013-2020年,我国城市天然气用气人口持续增长,2020年达到4.13亿人,“十三五”期间增速接近45%。经初步统计,2021年,中国城市天然气用气人口数将接近4.5亿人。
随着中国城市人口的快速增加,预计用气人口的基数将持续上行。同时,随着中国家庭数量的增长,城市燃气接驳业务需求量和人均燃气消费量将会增加。另外,中国目前城市管道燃气使用率约仅为30%左右,较发达国家乃至东南沿海一线城市80-90%的管道燃气使用率尚有巨大的提升空间。综上可知,中国城市燃气消费领域发展前景广阔。
工业燃料消费情况
“十三五”期间,在工业煤改气政策的推动下,我国工业燃气消耗量大幅提升,2020年我国工业燃气消费量达到1246亿立方米,占天然气消费总量的37-38%,五年间消费量增长了509亿立方米。根据自然资源部在《中国天然气发展报告2021》中的预测,2021年中国工业燃料用天然气消费量约增加170亿立方米,经初步统计,2021年我国工业燃气消费量约为1416亿立方米。
化工用天然气消费情况
天然气在化工领域主要用于制造化肥、甲醇等化工产品,在2007年及之前该类用气一直占天然气表观消费量的最大比重,但是按照我国的天然气产业政策,部分天然气化工项目在天然气利用中属于限制类和禁止类,因此2008年以来,化工用天然气消费量比之前有所减少,比重也有所下降。
“十三五”时期,在化工领域,由于政策调控,用气保持低增长,2020年我国化工用气消费量295亿立方米,与5年前基本相同。经初步统计,2021年中国化工用天然气消费量约为316亿立方米。
发电用天然气消费情况
减少煤炭消耗,增加可再生能源使用是我国实现“双碳”目标的必经之路,在发电领域,天然气可以成为这一转变过程中承上启下的关键能源。一方面,根据现有文献的估计,未来15年,仅依靠非化石能源发电不能满足中国庞大的电力需求,另一方面,以高比例可再生能源为主的新一代电力系统对灵活性和安全可控等提出了更高的要求,天然气的清洁低碳和灵活性将在可再生能源为主的电力系统构建中发挥积极作用。
截止2020年底,我国天然气发电装机容量达到9802万千瓦,占全国电力总装机的比例为4.5%,利用小时数为2520小时,则2020年中国天然气发电量为2470亿度,天然气单方发电量按4.71度/立方米来计算,2020年中国发电用天然气消费量达到525亿立方米。经初步统计,2021年中国发电用天然气消费量达到591亿立方米。
—— 以上数据参考前瞻产业研究院《中国天然气产业供需预测与投资战略规划分析报告》
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。